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Abstract 

 

A Tool for Dynamic Data Capture and Visualization in  

Heterogeneous Simulation Environments 

 

 

Matthew Genovese, M.S.E. 
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Supervisor:  Margarida Jacome 

 

System performance is important to accurately validate as early as possible in the 

design process.  Throughout the process of design refinement, engineers assemble 

heterogeneous simulation environments that commingle sub-models at various levels of 

abstraction, using assorted hardware description languages and system-level design 

languages.  Continuous performance validation can be possible in these environments 

throughout the architectural exploration process, and subsequently during design 

implementation.  In order to free engineers to measure performance for any resource 

within the heterogeneous system during simulation, it is necessary to capture data from 

any point of abstraction within the model to a single database.  Consequently, by 

providing a graphical and configurable visualization interface into this database, the 

architect can easily group data and quickly assemble key metrics that enable conclusions 

to be made about system performance.  This report is the culmination of a project 

undertaken to develop a tool that implements the above proposal. 
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CHAPTER 1 

Preface 

ABSTRACT 

System performance is important to accurately validate as early as possible in the 

design process.  Throughout the process of design refinement, engineers assemble 

heterogeneous simulation environments that commingle sub-models at various levels of 

abstraction, using assorted hardware description languages and system-level design 

languages.  Continuous performance validation can be possible in these environments 

throughout the architectural exploration process, and subsequently during design 

implementation.  In order to free engineers to measure performance for any resource 

within the heterogeneous system during simulation, it is necessary to capture data from 

any point of abstraction within the model to a single database.  Consequently, by 

providing a graphical and configurable visualization interface into this database, the 

architect can easily group data and quickly assemble key metrics that enable conclusions 

to be made about system performance.  This report is the culmination of a project 

undertaken to develop a tool that implements the above proposal. 

BACKGROUND 

System models are progressing to yield heterogeneous simulation environments, 

which enable them to become more broadly used throughout the design process.  

Initially, an Electronic System Level language (ESL) may be employed to construct an 

untimed or synchronous (cycle-accurate) model at a high level of abstraction early in the 

design process to explore performance and validate hardware and software requirement 

assumptions.  As the design process progresses, parts of the same model may become 
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more well-defined and more closely represent the actual hardware.  Sub-models are 

refined to more accurate models of computation, thus yielding a heterogeneous 

simulation environment with Hardware Description Languages (HDL’s) engaged to 

implement these new abstractions.  Additionally, external design and/or verification 

intellectual property (IP) may be integrated into the simulation environment as it becomes 

more solidified and ready for functional verification, leading to additional overall 

diversification.  Orthogonal to this development process, variations of the same 

environment can be used by system architects, designers, verification engineers, and 

software application engineers – each with their own goals, and therefore preferred input 

interface(s) and associated languages used to stimulate the model.  A beneficial 

characteristic of such a progressive unified environment is that the accuracy of initial 

performance estimates will increase as the level of design abstraction lowers towards a 

more accurate hardware implementation at the Register-Transfer Level (RTL), and 

beyond to the gate-level.  Therefore, a goal should be for engineers to monitor the system 

and block-level performance metrics of the model as the level of abstraction proceeds 

toward implementation, and ensure the predicted aspects of performance converge 

towards the previously estimated goals. 

However, this simulation environment is plagued by the same heterogeneity that 

enabled it to be employed throughout the design process.  In order to acquire 

performance measurements during simulation, the architect needs to extract data from the 

environment, conceivably from various points scattered about the model and stimuli, 

each potentially modeled at different levels of abstraction.  The method used for 

collection of the data may be as simple as employing embedded textual display 

statements that are post-processed by hand or script, though either method may prove to 

be relatively inflexible, or a non-trivial endeavor.  Other methods may involve using 
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custom in-house developed tools, or vendor tools designed for this purpose; nonetheless, 

either scenario requires that the tool support communication with the diversified 

environment.   

Once collected, the raw data alone may not yield meaningful information, unless 

it is condensed and combined to create performance metrics.  Performance metrics 

summarize vast quantities of simulation data to accurately assert meaningful indices of 

system performance.  These metrics provide feedback in the design refinement process 

for relative performance improvements when compared to previous designs, and an 

understanding of where performance problems currently exist when the system 

encounters specific preconditions. 

One way to start assembling relevant performance metrics is to view the captured 

data graphically, and visually associate related streams of data to initiate the analysis and 

correlation of variables.  Viewing one or more sets of captured data over time, or creating 

scatter plots of two or more dependent axes can aid in analysis, and subsequently allow 

the engineer to devise metrics that are useful for the particular analysis underway.  The 

visualization of data as multi-dimensional objects that can be freely manipulated in a 

graphical interface is seen by the author as positively contributing to this analysis. 

MOTIVATION 

Current Electronic Design Automation (EDA) tools in the architectural 

exploration and performance modeling arena are geared towards providing integrated 

high-level design environments.  In surveying the field, these tools are designed with the 

architectural exploration, co-design, and rapid prototyping features tightly coupled to the 

performance measurement aspects of the tool.  Within that group of tools, a small number 

are able to handle heterogeneous simulation environments with mixed languages and 

levels of abstraction.  Furthermore, the performance measurement capabilities are often 
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coupled to the proprietary models provided by the EDA company, yielding standardized 

and rigid measurement facilities available to the user.  Thus, once the design 

implementation has commenced, the performance measurement facilities within these 

tools decrease in value, and it becomes difficult to assess and feedback the performance 

of the RTL versus the original estimate gathered from the high-level model.  In addition, 

customers may have existing functional models in RTL, unique behavioral stimuli, and/or 

entire in-house developed simulation environments already available, such as for 

derivative products.  In these scenarios, it is quite possible that leveraging a portion of 

this intellectual property or environments for reuse in a new performance model is 

desirable, and only the performance measurement features are required versus the 

overhead of an entire architectural exploration suite. 

The motivation of this project is to develop a tool that enables the engineer to 

overcome the described obstacle with heterogeneous simulation environments by 

providing various methods of data capture from anywhere within the model and stimuli 

during simulation.  With uniform support for different software, electronic system-level, 

and hardware description languages that may be present, the architect can capture nearly 

any type of data from any employed level of abstraction within the model, including 

continuous-time, discrete-time, synchronous, and untimed models of computation.  

Additionally, the tool framework provides a centralized online repository for deposition 

of this data, and enables access to this data via a multi-dimensional, highly configurable 

visualization interface for performance analyses.  The engineer is then empowered to 

explore the data and draw conclusions to feedback into the design process, from design-

space exploration through to RTL implementation. 
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CHAPTER 2 

Introduction 

RESOURCES AND PERFORMANCE MEASUREMENT 

In order to realize most any measurement of performance1, the evaluation must be 

performed relative to a particular resource.  In the context of this report, a resource is 

simply defined as a specific item of observation within the model for which data is 

captured during simulation, with the goal of assessing a type of performance.  The item 

may consist of a single gate, a logic block, a group of associated blocks, or even the 

entire model.  However, the precise definition of the resource should always be kept 

mindful because it declares the portion of the model to which the derived performance 

metrics pertain.  Equally as important, it declares the set of external resources that the 

performance metrics do not directly measure. 

The instrumentation developed for this project was devised with resource 

performance measurement in mind.  In particular, the measurement facilities provide a 

means for the user to ultimately derive weighted performance metrics.  These are 

essentially figures of merit describing overall system performance given a relative 

weighting of the relevance and criticality of individual performance metrics.  This is 

accomplished by enabling the user to capture both raw resource performance data and 

resource state data over time during the simulation, and subsequently combining them to 

accurately describe how the resource performance modulates overall system performance 

based upon the actual resource usage with a given system configuration and load. 

                                                 
1 The use of the term performance is purposefully ambiguous because most any specific 
aspect of performance can be substituted by the reader in this context, such as timing or 
power performance.
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Given this strategy, the three categories of measurement devised for this tool are 

as follows: 

 Resource Utilization – Measurements yielding the arbitrary state of a 

resource during simulation. 

 Resource Performance – Measurements yielding performance 

information for a resource during simulation. 

 Global Measurements – Measurements not relative to a particular 

resource, but rather yielding information that pertains to the entire system 

model, or simulation environment. 

Per these definitions, any given weighted performance metric can be calculated as 

the cross product of the observed resource utilization statistic and the desired resource 

performance measurement over the course of the simulation.  Whereas individual 

resource performance measurements alone focus on the sole operation of the resource, a 

weighted performance measurement is calculated as individual performance in terms of 

its utilization within the system, and yields a system-relevant metric. 

Resource Utilization 

The goal of resource utilization measurements is to ascertain the states of a 

resource, and time intervals thereof, continuously over the duration of the simulation.  

The resource state is an arbitrary summarization of the condition of the resource for a 

period of time.  For instance, almost any given functional resource can be assigned a 

resource state of either BUSY or IDLE, designating if the resource is active or not active, 

respectively.  Building upon that degenerate case, more complex and meaningful 

resource states can be devised to amplify visibility of the resource activity during 

simulation.  An example can be found in Figure 1 below, where the state of a resource 

bus_state is captured over time as the simulation progresses.  As shown, three state 



values are arbitrarily applied by the user (Idle, Arbitrate, and Transfer), presumably 

signifying the temporal condition of the resource under observation. 

 

 

Figure 1 – Example Depiction of a Resource State Measurement 

Recalling the latter part of the above definition, any observed resource state has 

an associated bounded duration of time.  In a timed model, a bound may be any duration 

between the entire length of the simulation, and the smallest time duration made available 

by the event-based or cycle-based simulator.  Even in an untimed model, a notion of time 

can be applied to partition functional steps towards completion of an algorithm, and can 

be weighted by the anticipated effort required to perform each step.  Thus, every resource 

state measurement contains an annotated time of transition to the state, and duration of 

the state.  Accumulation of these resource state statistics over the course of the simulation 

yields the resource utilization, segregated into the total amount of time spent in each 

state. 

Resource Performance 

The goal of a resource performance measurement is to obtain raw or calculated 

numerical values, or record milestones observed in the model during simulation that 

specify direct measures of instantaneous or cumulative performance.  Various types of 

measurements fall into the first category; for instance, general numerical value 
 7
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measurements, quantifications of latency (delay), bandwidth or data-rate (data quantity 

per unit time), activity factors (percent of resource in operation), and power consumption 

(energy consumption per unit time.)  Though most any value can be captured from the 

model to designate some quantification of performance, it is important to remember the 

measurement should not account for the state of the resource under observation; this is 

the responsibility of the resource utilization measurement. 

Another means of measuring resource performance is to assess performance as an 

accumulation of functional milestones during simulation.  The milestone, or resource 

event, is posted at the point in time when the observation is made, and may be recurrent 

as time progresses.  The resource event carries an annotation of the time of occurrence, 

and the cumulative count for that particular event from the beginning of simulation.  This 

allows visibility into the functionality of the resource for any arbitrary time interval 

during simulation, and can be used to derive performance statistics.  For example, a user 

wishing to monitor cache subsystem performance may decide to post a resource event 

when a data request results in a cache-miss.  The user realizes that when the cache-miss 

event is posted, it is an implication that overall performance may be degraded because the 

cache could not immediately provide the requested data.  By tracking the quantity and 

proximity of occurrences of this event during the simulation, exploration can be done to 

ascertain the cause of this performance-degrading behavior, and whether it occurs enough 

to warrant some redesign. 

A resource event only exists at a single point in time.  However, it can be useful 

to relate separate but logically connected resource events that together formulate a 

meaningful span of time.  The result is a resource event span, where resource events are 

posted individually, and yet related to other resource events occurring at different times.  



The relation of the resource events is arbitrarily defined by the user, and yields a dynamic 

association of resource events regardless of the order they are posted in simulation. 

 

 

Figure 2 – Example Depiction of a Resource Span Measurement 

The relation of the grouped events in the span is accomplished by use of a 

common span tag.  As depicted in Figure 2, the four events posted are related by the tag 

tag1.  Although each posted resource event exists at a single point in time, the tag relates 

the events such that the span exists over a duration of time.  Each time an event is posted, 

the tag is used to associate it with other events posted with the same tag, and 

subsequently calculate the time delta since a previous event with the same tag (i.e. within 

the span).  By assigning a common thread of data to be a span tag, the span measurement 

enables data traces through a resource, thus providing an understanding of temporal 

performance along a prescribed data path. 

Global Measurements 

The goal of a global measurement is to yield information about the overall model 

or the simulation environment, not pertaining to a particular resource in general.  The 

measurement can be a declaration of global state of the model or simulation, similar to 

that of a resource state.  One example is a global state that defines the condition of the 

model as being in a reset phase, or in a normal operation phase.  This state can be thought 
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to apply to the entire model, or across all functional resource boundaries in the model, 

and therefore global to all resources as an indication of overall device state.  Thus, this is 

an appropriate use of a global state measurement.  Similar to that of a resource state, 

global states have an attributed time of transition to state, and duration of state. 

Another global measurement is a global event, which is similar to a resource 

event.  An example use of a global event is to post an event when a new test case is 

applied in the simulation.  The event milestone can be used to logically partition 

individual tests that are applied in the same simulation.  Similar to that of a resource 

event, global events have an attributed time of event posting, and cumulative count for 

the particular event. 

MODEL ANALYSIS TOOL OVERVIEW 

The purpose of the Model Analysis Tool (hereafter abbreviated MAT) is to enable 

dynamic extraction of data from a homogeneous or heterogeneous simulation 

environment using the resource-centric philosophy described above, and deposit the data 

into a centralized data store for access and manipulation via a graphical visualization 

interface. 

Key Features 

 The MAT front-end Data Capture Interface Library commands have a 

unified syntax and can be used in a variety languages (Verilog, C, C++, 

SystemC) to capture data from continuous-time, discrete-time, 

synchronous, and untimed models. 

 Data capture commands can be scattered about the simulation 

environment as virtual probes that send most any type of data to MAT as 

the simulation executes. 
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 Online storage of the captured data can reside on a separate workstation 

from the system running the simulation, which decreases the simulator 

memory overhead associated with using MAT to collect data during a 

simulation. 

 Visualization enables data viewing as multi-dimensional plots that can be 

manipulated on-screen to best present metrics for performance analysis. 

User Command Taxonomy 

In accordance with the performance assessment categorization outlined in the 

preceding discussion, the user instrumentation for the Model Analysis Tool follows the 

same organizational structure, and supplements with additional control functionality as 

summarized below. 

 
Command Category Description 
Time Management Enables creation of timesets, which are arbitrary 

notions of regular or irregular time. 
Data Management Enables creation of datasets – the top-level 

organization for data, with optional association with 
predefined timesets. 

Resource Utilization Assessment Provides commands that enable resource 
measurement in terms of temporal state. 

Resource Performance Assessment Provides commands that enable resource 
measurement in terms of temporal behavior or 
function. 

Global Measurement Provides commands that measure global aspects of 
the model or the surrounding simulation 
environment. 

General Control Provides commands that manage aspects of MAT 
functionality. 

Table 1 – User Command Taxonomy 

The subsequent chapter will more thoroughly describe the commands available to 

the user within each of these categories in terms of syntax and usage. 
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Visualization 

The visualization of the acquired data is accomplished through an open-source 

tool called OpenDX.  This is a full-featured application that can be used as a stand-alone 

visualization environment, or integrated with other applications via the OpenDX 

Application Programming Interface (API).  The current integration with MAT allows 

OpenDX to run as a stand-alone tool, and import MAT-created data for subsequent 

analyses.  Future revisions are planned to fully integrate OpenDX with MAT to yield a 

unified visual interface into the data storage, and to provide predefined visualizations that 

can be applied by the user to the imported data. 
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CHAPTER 3 

The Model Analysis Tool 

HIGH-LEVEL ARCHITECTURE 

The Model Analysis Tool is comprised of three separate entities that work 

together to provide a means of data capture from the model during simulation, maintain 

online data storage, and enable graphical visualization, as depicted in Figure 3 below.  

The first is the Data Capture Interface Library (DCIL), which is a shared library that is 

linked in with the model and stimuli as the simulator executable is created.  The DCIL is 

primarily responsible for receiving data obtained from the simulation environment, and 

subsequently translating this data into the internal MAT data model via creation of data 

objects that are sent to an online storage server.  Several versions of the DCIL are 

provided, one for each software or hardware description language supported.  In addition 

to each shared library, a text header file is also supplied that provides the function 

prototypes for each DCIL command.  This header file is included during the model 

compilation process, and is necessary for any source code files that make use of the MAT 

user commands, which are essentially DCIL library calls. 

 



 

Figure 3 – Example of the Distributed MAT Architecture 

The next application provided is MATServ, which is a data server that receives the 

MAT data objects from the DCIL, and stores them for subsequent access by the 

visualization application.  This server may be running on the same workstation as the 

simulator executable, or may reside on a different workstation, as shown in Figure 3.  

Communication between the DCIL and MATServ is accomplished via a TCP/IP network 

socket connection [2].  Thus, the workstation executing the simulation model need not 

suffer from a decrease in available memory due to the data storage required by MATServ.  

In addition, future expansion of MATServ will feature lossy data compression such that 

large quantities of related data in storage can be algorithmically compressed to decrease 

the storage footprint in the workstation memory, and the size of the subsequent OpenDX 

visualization data model.  For example, simple data compression or aggregation 

techniques can be employed, such as remapping the original data into moving averages to 

reduce the data storage required. 
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The final MAT application is MATView, which enables the data visualization.  

When executed on the same or a separate workstation as MATServ, MATView 

communicates with the data server via a TCP/IP socket connection to receive data objects 

as they become available from the DCIL during simulation.  MATView can be operated 

asynchronously with respect to the simulation, and therefore can receive the latest data 
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when subsequent requests are made to MATServ.  MATView is responsible for acquiring 

the MAT data objects from MATServ, and translating them into the separate data model 

used by the OpenDX visualization tool.  Currently, this OpenDX data model is exported 

to a text file which can be imported by the OpenDX tool for visualization. 

MAT DATA MODEL 

MAT maintains an internal data model for organization of inbound data from the 

simulation environment.  Portions of the MAT data model are created explicitly via DCIL 

commands, while other parts are created dynamically as data arrives.  It is important to 

understand the MAT data model structure before proceeding to an explanation of the 

DCIL commands. 

A Notion of Time 

At the heart of the MAT data model is the concept of time.  From the perspective 

of the heterogeneous environment, the notion of time can have different meanings, 

depending upon the model of computation utilized for a given resource.  Discrete-time 

model abstractions typically rely a base simulation clock, from which all signal 

transitions, state changes, and model-generated events have an associated simulation 

clock timestamp.  Synchronous models of computation also rely on a simulation clock to 

indicate when all evaluations are instantaneously performed in each clock cycle.  In both 

cases, the simulation clock is typically the highest frequency clock in the model.  

Continuous-time models of computation execute with a notion of analog time versus the 

discretized time that was managed with the previous models.  This can be thought of as 

non-integer time, where the analog precision of a model measurement is only limited by 

the functional resources of the machine conducting the simulation.  Finally, untimed 
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models of computation are by definition without a concept of time; however, even here 

time can be arbitrarily applied to denote successive points of algorithmic execution. 

All inbound data to the DCIL have an associated simulation timestamp appended.  

Ultimately, this enables the user to create the most basic two-dimensional plot of the data 

values versus the simulation time when they were acquired.  As multiple variables are 

created during simulation, each with its own set of points consisting of data values and 

timestamps, the dependent variables can be correlated with their common simulation time 

to create multi-dimensional scatter plots. 

Although simulation time is the most basic notion of time, timed models typically 

function with clocks running slower than the simulation clock.  For example, a discrete-

time or synchronous microprocessor model may have a clock domain for the internal 

core, and another domain for the system bus clock, both of which are slower than the 

simulation clock.  These are examples of clocks that exhibit regularity, in that the steady-

state clock frequencies are constant.  In contrast, recurring events of interest may also 

exist in an timed or untimed model, such as bus transactions or keep-alive packets on a 

network.  These recurring events can be considered a type of clock, even if they exhibit 

timing irregularity with respect to the frequency of occurrence.  In either case, the user 

may wish to timestamp inbound data values according to a regular or irregular user-

defined clock; MAT addresses this by providing timesets. 

A timeset is an alternate notion of time, defined as monotonically increasing 

integer points along an axis, relative to simulation time.  A timeset can track a traditional 

clock within the design that exhibits regularity as shown in Figure 4, or it can track 

irregular events that occur over varying intervals as shown in Figure 5.  The creation of a 

timeset is performed via a call to the DCIL from within the simulation environment.  

Similarly, the trigger to increment a particular timeset is performed via a call to the 



DCIL.  MAT keeps track of the timeset time as a function of simulation time, and can 

apply the current timeset timestamp to any inbound data value received from the 

simulation environment, in addition to the simulation time.  Thus, ultimately the data 

values can be plotted versus the simulation time, or the time of capture according to a 

timeset time, the latter of which may be of more useful to the user for the particular 

analysis being performed. 

 

 

Figure 4 – Timeset Tracking of Regularity in the Model 

 

 

Figure 5 – Timeset Tracking of Irregularity in Model 

Note that with both simulation timestamps and timeset timestamps, it is possible 

for multiple data values pertaining to the same variable to arrive in the same time instant, 
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and therefore with the same timestamp.  In this case, the last value received is the one 

ultimately stored, overwriting all previous values captured. 

Data Model Organization 

The highest level of data categorization within the MAT data model is a dataset, 

as depicted in Figure 6 below.  A dataset is a collection of axes (variables) that can be 

logically related over time, or to each other.  The notion of a dataset is perhaps more 

philosophical than concrete, as the user is left to decide which sets of data formulate a 

reasonable grouping.  However, it is suggested that a single dataset should be relevant to 

a single resource within the model, and a single time domain, apart from simulation time. 

 

Tim
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Figure 6 – Depiction of a Dataset 

Datasets are created explicitly by the user via a DCIL command, and must be 

created before any captured data can be sent to it.  The dataset creation typically occurs 

early in the simulation to define the dataset name, and whether there will be an 

association with a predefined timeset.  If the dataset is not associated with a timeset, all 
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inbound data values into the dataset will be appended with the current simulation time.  

Otherwise, if the dataset is explicitly associated with a timeset, all inbound data values 

into the dataset will be appended with the current simulation time and timeset time.  

MAT supports creation of datasets with at most one associated timeset. 

Underneath the MAT data model hierarchy of datasets exist axes, each of which is 

likened to a one-dimensional array of data values that expands to store all data sent to it 

from the DCIL.  Upon creation, every dataset has one or two axes created automatically:  

the simulation time axis, and the timeset time axis (if the dataset was associated with a 

timeset at creation.)  Unlike datasets, new axes are automatically created as they are 

referenced by data capture calls to the DCIL from the simulation environment.  That is, 

the first time in simulation that data is captured by the DCIL for a yet unreferenced 

dataset axis name, the axis is created by MAT and the data is stored.  Subsequent 

references to the same dataset and axis will continue to store the data as defined by the 

particular DCIL command.   

Conceptually, the MAT data model can support an unlimited number of datasets, 

and an unlimited number of axes for each dataset.  However, the number is practically 

limited by the memory available to the MATServ data server.  The intended application of 

the MAT data model is for the user to create a dataset for each resource under 

observation that does not require an associated timeset, or for each resource within a 

specific time domain that requires a MAT timeset for advanced time tracking.  Axes 

within each dataset should be created and segregated based upon the type of information 

being collected.  An axis collecting state data for a resource utilization measurement 

should exist only to collect that type of information.  If deemed necessary, several aspects 

of the resource’s state can be captured, each on its own axis.  Additionally, other axes can 

be created to capture the desired aspects of resource performance, such as a latency, or 
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the observed quantity of data transmitted over time, and so on.  By grouping these single 

resource-related axes into a unique dataset, the resource performance and utilization data 

can immediately be combined and presented graphically over independent time axes 

(simulation time, and timeset time, if available).  Additionally, the common simulation 

time axis allows multi-variable correlation to be performed between dependent axes 

within the dataset to determine how they track each other. 

DATA CAPTURE INTERFACE LIBRARY 

As previously described, the Data Capture Interface Library (DCIL) is the 

interface between the simulation model and MAT, providing the commands by which 

model data is captured and subsequently translated into the internal data model 

representation as MAT data objects.  The DCIL provides several categories of commands 

to initialize portions of the MAT data model, and accomplish the specific type of data 

capture. 

All of the DCIL measurement commands which perform a data capture have at 

least two arguments: the dataset name and axis name for which the data is destined.  In 

some versions of the DCIL (e.g. for C, C++), the simulation time argument is also 

required.  For many commands, this argument is needed because the supported language 

or employed model of computation does not intrinsically have a notion of time, so this 

must be supplied by the user.  In other versions of the library (e.g. Verilog, SystemC), the 

language does have intrinsic simulation time support which is automatically captured by 

the DCIL command, and therefore it does not need to be explicitly specified in the 

command arguments.  By convention, if the simulation time is required, it is always the 

last argument in the DCIL command. 

Some data value measurement commands have another argument called a tag.  

More generalized than the span tag mentioned in the previous chapter, a tag is a means 
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by which the user associates previously captured data with newly captured data to 

formulate the new data point.  Tags are created dynamically as they are used, similar to 

how axes are created on-the-fly.  A tag is employed when the captured data may not 

directly correspond to the data immediately stored.  There are several measurement 

commands that employ tags, such as mat_measure_delta().  As will be described later, 

this command uses the current data value measured, and subtracts the previous data value 

measured with the same tag name, and stores that new value as a MAT data object, or 

data point.  The initial case is when mat_measure_delta() is called with a new tag name 

on a particular dataset and axis; in this scenario, no data object can be created because 

there is not a previous value to subtract.  Rather, the current data value is stored within 

the DCIL, and awaits a subsequent mat_measure_delta() command call with the same 

dataset, axis, and tag name.  This will cause MAT to compute the difference and create 

the first data point. 

The sections below are categorized by function, and detail each of the DCIL 

commands available for use in the model.  In each section, the commands will be 

designated as having an “HDL Syntax” (for Verilog and SystemC with an intrinsic notion 

of time), and a “C Syntax” (for C and C++ which do not have an intrinsic notion of time.)  

If one syntax is provided, it is applicable for all DCIL language implementations. 

 

Note: The DCIL syntax for some commands allows for optional 

arguments, and denotes them as surrounded by square brackets “[ ]”.  The 

DCIL as implemented for C++ and SystemC allows for any unused 

optional argument for a command to be simply discarded from the list of 

arguments.  However, for the DCIL implemented in Verilog and C,  

optional arguments are not allowed.  Therefore, all arguments, including 
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any denoted below as optional, must be included.  In the case where an 

optional argument would normally be discarded, the syntax should replace 

the argument with zero (0), and the DCIL will handle the command as if 

the argument was not present. 
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Timeset Creation 

The two commands in this category handle the creation of a timeset, and the 

increment of a timeset time, which will be applied to all subsequent inbound data for 

datasets that associate with the timeset. 

Timeset Commands 
Syntax: mat_timeset_define (<timeset>, <units>) 
  
Parameters: timeset (string) Name of the timeset. 
 units (string) Units of the timeset. 
   
Description: Defines a timeset name and the associated units.  This timeset name is 

later referenced when updating a timeset time, or defining a dataset that 
will be associated with the timeset. 

 
Syntax: mat_timeset_update (<timeset>) 
  
Parameters: timeset (string) Name of the timeset. 
   
Description: Given a predefined timeset, this command monotonically increments 

the current time value associated with this timeset. 

Table 2 – Timeset Commands 

Example Usage 

Below is an example Verilog code snippet showing how MAT timesets are 

created and updated. 
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initial 
begin 
  $mat_timeset_define (“pci_clk”, “PCI Clocks”); 
  $mat_timeset_define (“core_clk”, “Core Clocks”); 
  $mat_timeset_define (“ddr_clk”, “DDR Clocks” 
end 
… 
always @(posedge pci_clk) 
  $mat_timeset_update (“pci_clk”); 
… 
always @(posedge core_clk) 
  $mat_timeset_update (“core_clk”); 
… 
always @(ddr_clk) 
  $mat_timeset_update (“ddr_clk”); 

 

In this example, three timesets are created when the simulation begins.  

Subsequently, Verilog always blocks are used to ensure each timeset is updated when the 

positive edge of each respective clock is observed. 
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Dataset Creation 

This category is responsible for the creation of datasets. 

Dataset Creation Command 

The command below creates a dataset, with or without association with a 

predefined timeset.  Note that the timeset argument is optional; if not applied, the dataset 

will not have a timeset association. 

 
Syntax: mat_init_dataset (<dataset>, [<timeset>]) 
  
Parameters: dataset (string) Name of the dataset to be created. 
 timeset (string) Name of timeset associated with this 

dataset.  If not specified, no timeset 
association is performed. 

Table 3 – Command Syntax of mat_init_dataset() 

Example Usage 

The below example Verilog code shows how datasets are created without timeset 

association, and with timeset association. 

 
initial 
begin 
  // Create dataset bus_arbiter without a timeset association. 
  $mat_init_dataset (“bus_arbiter”); 
  // Create dataset pci_perf with association with timeset pci_clk. 
  $mat_init_dataset (“pci_perf”, “pci_clk”); 
end 

 

The above code demonstrates the creation of two datasets when the simulation 

begins.  The dataset bus_arbiter is created without timeset association, and the dataset 
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pci_perf is created to have association with the pci_clk timeset, which is assumed to have 

been previously defined via a mat_timeset_define() command call. 
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Resource Utilization Assessment 

This category handles the extraction of resource utilization data from the 

simulation environment. 

Resource State Measurement 

This command captures the current state of a resource, and stores it on the 

specified axis in a predefined dataset, along with the current simulation time and timeset 

time (if associated with the dataset.) 

 
HDL Syntax: mat_set_state (<dataset>, <axis>, <state>) 
C Syntax: mat_set_state (<dataset>, <axis>, <state>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the state data 

will be stored. 
 state (string) Name of the state to apply to the axis. 
 sim time (floating point) Simulation time of data capture. 

Table 4 – Command Syntax of mat_set_state() 

Example Usage 

The below example Verilog code shows how the arbitrary state of a resource is set 

as the state of the resource changes over time. 

 



 28

always @(posedge clk) 
begin 
  case (current_state) 
    `IDLE :  
     begin 
       $mat_set_state (“pci_perf”, “tx_state”, “Idle”); 
     … 
     end 
    `REQUEST_BUS :  
     begin 
       $mat_set_state (“pci_perf”, “tx_state”, “Arbitrate”); 
     … 
     end 
    `START_TRANSFER :  
     begin 
       $mat_set_state (“pci_perf”, “tx_state”, “Data Transfer”); 
     … 
     end 
  … 
  endcase 
end 

 

The above code fragment depicts a finite state machine implementation.  Each of 

the three states listed within the Verilog case structure set the state of the tx_state axis to 

reflect the state of the current_state variable within the model.  Because the state is 

captured along with the simulation time (and timeset time, if applicable), the amount of 

time spent in each state during simulation is automatically calculated. 
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Resource Performance Assessment 

The commands in this category relate to the extraction of resource performance 

data from the model.  There are a variety of commands provided to enable the data 

extraction in a manner that is most intuitive for the user.  These commands support the 

capture of simple and composite numerical data, and user-defined event data.  All data 

points generated will have the simulation time appended, as well as the timeset time of 

the dataset (if associated with the specified dataset.) 

 

Simple Value Measurement 

This is the most basic numerical measurement command, which receives a passed 

in floating point value, and becomes the created data point in the MAT data model. 

 
HDL Syntax: mat_measure (<dataset>, <axis>, <value>) 
C Syntax: mat_measure (<dataset>, <axis>, <value>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the data will 

be stored. 
 value (floating point) Numerical value. 
 sim time (floating point) Simulation time of data capture. 

Table 5 – Command Syntax of mat_measure() 

As shown in Figure 7 below, the floating point value passed in via 

mat_measure() is directly translated into the data point created, without any calculation 

or manipulation.  Also note that the data point is formulated with the time that the capture 

occurred, which always includes simulation time, and may include the additional timeset 

time, if the dataset was created with timeset association. 

 



Time t1 t2 t3

Axis

(t2, y2)

y1

y3

y2

(t3, y3)Data Point: (t1, y1)

mat_measure()

 

Figure 7 – Depiction of Simple Value Measurements  

Example Usage 

The below example Verilog code shows how direct value measurements are 

made. 

 
always @(posedge capture_clk) 
begin 
   … 
   // Capture the current ADC output from the signal adc_out. 
   $mat_measure (“adc”, “adc_output_value”, adc_out); 
end 

 

Incremental Value Measurement 

This is a slightly advanced numerical measurement command.  The floating point 

value passed in is added to the value of the previous data point, and the sum becomes the 

new data point.  Thus, the value passed in creates an incrementally modified value with 

respect to the previous data point. 
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HDL Syntax: mat_measure_sum (<dataset>, <axis>, <value>) 
C Syntax: mat_measure_sum (<dataset>, <axis>, <value>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the data will 

be stored. 
 value (floating point) Numerical value. 
 sim time (floating point) Simulation time of data capture. 

Table 6 – Command Syntax of mat_measure_sum() 

As shown in Figure 8 below, the floating point value passed in via 

mat_measure_sum() is translated into a data point via use of the previously captured 

data point.  Also note that the data point is formulated with the time that the capture 

occurred, which always includes simulation time, and may include the additional timeset 

time, if the dataset was created with timeset association. 

 

Time t1 t2 t3

Axis

(t2, y2+y1)

y1

y3

y2

(t3, y3+y2)Data Point: (t1, y1)

mat_measure_sum()

 

Figure 8 – Depiction of Incremental Value Measurements 

Example Usage 

The below example Verilog code shows how accumulated value measurements 

are made. 
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always @(posedge capture_clk) 
begin 
   … 
   // Capture and accumulate the error signal output. 
   $mat_measure_sum (“filter”, “feedback_err”, err_out); 
end 

 

The advantage to using mat_measure_sum() over mat_measure() in this case is 

that the summation is maintained by the DCIL, and therefore an extra variable within the 

model is not required to store the accumulated data.  If mat_measure() was employed in 

this scenario, the extra variable to maintain the accumulation would be required in the 

model. 

 

Tagged Delta Measurement 

This is in the category of advanced numerical measurement commands.  The 

creation of a data point is dependent on whether a previous delta value measurement 

command was performed with the same tag name on the dataset axis. 

(a) If no previous delta value measurement was performed with the same tag 

name, the passed in value is saved in the DCIL, and no data point is 

generated. 

(b) If a previous delta value measurement was performed with the same tag 

name, that previous value is subtracted from the passed in value, and the 

result becomes the new data point. 

 



HDL Syntax: mat_measure_delta (<dataset>, <axis>, <tag>, <value>) 
C Syntax: mat_measure_delta (<dataset>, <axis>, <tag>, <value>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the delta value 

data will be stored. 
 tag (string) Tag name used for association of data 

on the axis. 
 value (floating point) Numerical value. 
 sim time (floating point) Simulation time of data capture. 

Table 7 – Command Syntax of mat_measure_delta() 

As shown in Figure 9 below, the floating point value passed in via 

mat_measure_delta() is translated into a data point via use of the previously captured 

data point with the same tag.  Also note that the data point is formulated with the time 

that the capture occurred, which always includes simulation time, and may include the 

additional timeset time, if the dataset was created with timeset association. 

 

Time t1 t2 t3

Axis

(t2, y2-y1)

y1

y3

y2

(t3, y3-y2)

tag = a

tag = a

tag = a

mat_measure_delta()

Data Point: <none>  

Figure 9 – Depiction of Tagged Delta Measurements 

Example Usage 

The below example Verilog code shows how delta measurements are made. 
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always @(posedge capture_clk) 
begin 
   … 
   // Measure the difference between each successive maximum s_out 
   // value over time. 
   if (peak) 
      $mat_measure_delta (“adc”, “sine_out”, “delta_max”, s_out); 
end 

 

In the above example, the goal is to measure the difference between each 

successive maximum value of a signal within the model.  Since maximum values of s_out 

are attained over time, mat_measure_delta() uses the tag delta_max to retain the 

previous maximum value of s_out used in the current calculation.  Thus, after the first 

capture of the s_out value, each successive capture will use the previous value to 

calculate the new data point in the sine_out axis.  The peak model variable is assumed to 

be true when the maximum value is driven on s_out, based on the design. 

If mat_measure() was employed to implement this same measurement, an extra 

variable within the model would be required to store the previous maximum value, and 

the delta calculation would be performed explicitly before submitting the result as the 

new data point. 

 

Tagged Rate Measurement 

This is in the category of advanced numerical measurement commands.  The 

creation of a data point is dependent upon whether a previous rate value measurement 

command was performed with the same tag name on the dataset axis. 

(a) If no previous rate value measurement was performed with the same tag 

name, the passed in value is saved in the DCIL, and no data point is 

generated. 



 35

(b) If a previous rate value measurement was performed with the same tag 

name, the passed in value is divided by the difference in time between the 

current time, and the previous data point’s time.  The result of that 

calculation becomes the new data point. 

 
HDL Syntax: mat_measure_rate (<dataset>, <axis>, <tag>, <value>) 
C Syntax: mat_measure_rate (<dataset>, <axis>, <tag>, <value>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the rate data 

will be stored. 
 tag (string) Tag name used for association of data 

on the axis. 
 value (floating point) Numerical value. 
 sim time (floating point) Simulation time of data capture. 

Table 8 – Command Syntax of mat_measure_rate() 

As shown in Figure 10 below, the floating point value passed in via 

mat_measure_rate() is translated into a data point via use of the previously captured 

data point with the same tag.  Also note that the data point is formulated with the time 

that the capture occurred, which always includes simulation time, and may include the 

additional timeset time, if the dataset was created with timeset association. 

 



Time t1 t2 t3

Axis

(t2, y2/t2-t1)

y1

y3

y2

(t3, y3/t3-t2)

tag = a

tag = a

tag = a

mat_measure_rate()

Data Point:  

Figure 10 – Depiction of Tagged Rate Measurements 

Example Usage 

The below example Verilog code shows an example of rate value measurements 

are utilized to capture bandwidth measurements during simulation. 
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always @(posedge pci_clk) 
begin 
  case (transaction_state) 
    `START_TX : 
    begin 
      … 
      // Clear the tag (tx_bw) for the trans_bw axis.  This ensures 
      // the first mat_measure_rate() call will establish a new set of 
      // measurements. 
      $mat_clear_tag (“pci_perf”, “trans_bw”, “tx_bw”); 
      // Make the first measurement.  Note that the very first axis  
      // value measurement for a new tag is a dummy value, since it is  
      // not used in the subsequent rate calculation.  So, we use 0. 
      $mat_measure_rate (“pci_perf”, “trans_bw”, “tx_bw”, 0); 
    end 
    … 
    `END_TX : 
    begin 
      … 
      // Measure how many bytes were transferred during this  
      // transaction.  byte_count is assumed to be a register holding 
      // the number of bytes transferred.  This is a measurement of  
      // transaction bandwidth, or the amount of data  
      // transferred over the duration of the transaction. 
      $mat_measure_rate (“pci_perf”, “trans_bw”, “tx_bw”, byte_count); 
 
      // Here, we’re measuring along a different axis, and the tag  
      // (bw) is never cleared.  Therefore, the delta in time is  
      // from transaction end to transaction end. 
      // So this a measurement for the bytes transferred over the time 
      // elapsed since the last transaction, which is an overall bus  
      // bandwidth measurement. 
      $mat_measure_rate (“pci_perf”, “bus_bw”, “bw”, byte_count); 
      … 
    end 
    … 
  endcase 
end 

 

This example depicts how mat_measure_rate() can be used to measure 

bandwidth (data rate).  The axis trans_bw captures measurements that assess the 

transaction bandwidth: amount of data transferred divided by the time spent in the 

transaction.  This is accomplished because the tag tx_bw on the trans_bw axis is cleared 

every time the transaction begins (see description of mat_clear_tag() below).  

Conversely, the axis bus_bw captures measurements that assess the overall bus 
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bandwidth: amount of data transferred divided by the time since the last transaction 

ended.  This is accomplished because the tag bw on the bus_bw axis is never cleared, and 

therefore the time delta measurement in the rate calculation includes any idle time on the 

bus between transactions. 

 

Tagged Derivative Measurement 

This is in the category of advanced numerical measurement commands.  The 

creation of a data point is dependent upon whether a previous derivative value 

measurement command was performed with the same tag name on the dataset axis. 

(a) If no previous derivative value measurement was performed with the same 

tag name, the passed in value is saved in the DCIL, and no data point is 

generated. 

(b) If a previous derivative value measurement was performed with the same 

tag name, the previous data point’s value is subtracted from the passed in 

value, and that quantity is divided by the difference in time between the 

current time and the previous data point’s time.  The result of that 

calculation becomes the new data point. 

 
HDL Syntax: mat_measure_deriv (<dataset>, <axis>, <tag>, <value>) 
C Syntax: mat_measure_deriv (<dataset>, <axis>, <tag>, <value>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the derivative 

data will be stored. 
 tag (string) Tag name used for association of data 

on the axis. 
 value (floating point) Numerical value. 
 sim time (floating point) Simulation time of data capture. 

Table 9 – Command Syntax of mat_measure_deriv() 



As shown in Figure 11 below, the floating point value passed in via 

mat_measure_deriv() is translated into a data point via use of the previously captured 

data point with the same tag.  Also note that the data point is formulated with the time 

that the capture occurred, which always includes simulation time, and may include the 

additional timeset time, if the dataset was created with timeset association. 

 

Time t1 t2 t3

Axis

(t2, y2-y1/t2-t1)

y1

y3

y2

(t3, y3-y2/t3-t2)

tag = a

tag = a

mat_measure_deriv()

Data Point:

tag = a

 

Figure 11 – Depiction of Tagged Derivative Measurements 

Example Usage 

The below example Verilog code shows how derivative value measurements are 

made. 

 
always @(posedge capture_clk) 
begin 
   … 
   // Capture the current ADC output from the signal adc_out. 
   $mat_measure_deriv (“adc”, “adc_output_deriv”, adc_out); 
end 

 

This example shows how the mat_measure_deriv() command can be used to 

measure a discrete time derivative of the signal adc_out.  As the adc_out value is 
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captured, the previous data point (including value and time of capture) is used to create 

the new data point per for formula shown in Figure 11. 

 

Tagged Time  Measurement 

This is in the category of advanced numerical measurement commands.  The 

creation of a data point is dependent upon whether a previous time value measurement 

command was performed with the same tag name on the dataset axis. 

(a) If no previous time value measurement was performed with the same tag 

name, the current simulation time and timeset time (if applicable) is saved 

in the DCIL, and no data point is generated. 

(b) If a previous time value measurement was performed with the same tag 

name, the previous data point’s time is subtracted from the current time.  

The result of that calculation becomes the new data point. 

 
HDL Syntax: mat_measure_time (<dataset>, <axis>, <tag>) 
C Syntax: mat_measure_time (<dataset>, <axis>, <tag>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the time data 

will be stored. 
 tag (string) Tag name used for association of data 

on the axis. 
 sim time (floating point) Simulation time of data capture. 

Table 10 – Command Syntax of mat_measure_time() 

As shown in the above table or in Figure 12 below, no value is passed in for 

mat_measure_time() because the current time (simulation and timeset time), and the 

previously captured data point with the same tag are the only data required to create the 

new data point.  Note that the data point is formulated with the time that the capture 



occurred, which always includes simulation time, and may include the additional timeset 

time, if the dataset was created with timeset association. 

 

Time t1 t2 t3

Axis

(t2, t2-t1) (t3, t3-t2)

tag = a

tag = a

mat_measure_time()

Data Point:

tag = a

 

Figure 12 – Depiction of Tagged Time Measurements 

Example Usage 

The below example Verilog code shows how time measurements are used to 

assess latency. 
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always @(posedge pci_clk) 
begin 
  case (arbitration_state) 
    `REQUEST : 
    begin 
      … 
      // Clear the tag (lat) for the req2gnt_lat axis.  This ensures 
      // the first mat_measure_time() call will establish a new set of 
      // measurements. 
      $mat_clear_tag (“master_perf”, “req2gnt_lat”, “lat”); 
      // Make the first measurement.  Note that the first value 
      // measurement for a new tag just establishes the tag and 
      // first time point.  No data point is created yet. 
      $mat_measure_time (“master_perf”, “req2gnt_lat”, “lat”); 
    end 
    … 
    `GRANT : 
    begin 
      … 
      // Grant has been received.  Measure time since request was 
      // asserted.  This will create a data point for the request 
      // to grant latency on the req2gnt_lat axis. 
      $mat_measure_time (“master_perf”, “req2gnt_lat”, “lat”); 
      … 
    end 
    … 
  endcase 
end 

 

The above example shows how mat_measure_time() is used to capture the 

latency from a request to a subsequent grant.  First, mat_clear_tag() is called to reset any 

internal DCIL state of the lat tag.  Then, the call to mat_measure_time() establishes the 

time when the request is asserted.  The second call to mat_measure_time() occurs when 

the grant is received, and calculates the difference in time from the original request 

(specified by referring to the lat tag) and the current time.  This yields the request-to-

grant latency, which becomes a data point. 

 



Resource Event Measurement 

Separate from the above numerical measurements, resource event measurements 

record observations during simulation.  Each event data point records the name of the 

event, the time of observation (both in simulation time, and timeset time if applicable), 

and the cumulative number of observations of the event name. 

 
HDL Syntax: mat_event (<dataset>, <axis>, <event>) 
C Syntax: mat_event (<dataset>, <axis>, <event>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the event data 

will be stored. 
 event (string) Name of the event generated at the 

current simulation time and timeset 
time for the referenced axis. 

 sim time (floating point) Simulation time of data capture. 

Table 11 – Command Syntax of mat_event() 

As shown in Figure 13 below, mat_event() has been called four times during a 

simulation, which translated into four separate data points.  Note that the event eventA 

was captured twice, and therefore the count for the latter capture at time t4 was 

automatically incremented to 2 by the DCIL upon capture. 

 

 

Figure 13 – Depiction of Resource Event Measurements 
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Example Usage 

The below example Verilog code shows how events are posted to track 

functionality of the model. 

 
always @(posedge core_clk) 
begin 
  … 
  if (instr_cache_miss) 
  begin 
    // Instruction cache miss occurred. 
    $mat_event (“icache_perf”, “icache_miss”, “I-MISS”); 
  end 
end 

 

As shown in the simple example above, a resource event is posted when 

instr_cache_miss is true, presumably when the instruction cache of a processor has 

encountered a miss.  Thus, the I-MISS resource event is posted every time an instruction 

cache miss occurs, and this data point includes the cumulative number of times the event 

is posted.  This can enable the engineer to eventually assess when the event arises relative 

to other conditions during simulation, and track the number of times an instruction miss 

has occurred. 

 

Resource Span Event Measurement 

As an extension to the resource events described above, resource span events are 

dynamically grouped according to association with a tag.  Each span event data point 

records the name of the event, the time of observation (both in simulation time, and 

timeset time if applicable), and the time since the previous span even was posted with the 

same tag. 
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HDL Syntax: mat_span_event (<dataset>, <axis>, <tag>, <event>) 
C Syntax: mat_span_event (<dataset>, <axis>, <tag>, <event>, <sim time>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the span event 

data will be stored. 
 span tag (string) Tag name used for association of span 

events on the axis. 
 event (string) Name of the span event generated at 

the current simulation time and timeset 
time for the referenced axis. 

 sim time (floating point) Simulation time of data capture. 
 
HDL Syntax: mat_span_end (<dataset>, <axis>, <tag>, [<event>]) 
C Syntax: mat_span_end (<dataset>, <axis>, <tag>, [<event>, <sim time>]) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where the span event 

data will be stored. 
 span tag (string) Tag name reference to the span that 

will be ended. 
 final event (string) If specified, this is the name of the 

final span event to be generated before 
ending the span. 

 sim time (floating point) Simulation time of data capture. 

Table 12 – Span Event Commands 

The command mat_span_event() posts a span event on the designated dataset 

and axis at the current simulation time, and timeset time (if associated with the dataset.)  

The posted event is associated with other events in the span via the specified tag.   

The command mat_span_end() ends a span on the designated dataset and axis, 

and optionally can post a span event at the current simulation time and timeset time just 

prior to ending the span. 

As shown in Figure 14 below, four span events were posted on the trace axis, 

each within the same span via use of the span tag tag1.  Note that the last event eventD 

may have been posted by calling mat_span_event() followed by mat_span_end() 



without the optional final event, or posted via calling mat_span_end() alone with the 

optional final event specified.  As each event data point is created, the time delta between 

the current time and previous event’s time is calculated, and becomes part of the stored 

data point. 

 

Time

eventA

eventB eventC

eventD

trace

tag1

(t1, “eventA”, 0)Data Point: (t2, “eventB”, 
t2-t1)

(t3, “eventC”, 
t3-t2)

(t4, “eventD”, 
t4-t3)  

Figure 14 – Depiction of Resource Span Event Measurements 

Example Usage 

To illustrate how mat_span_event() and mat_span_end() enable data traces, we 

need to construct a small system where data flows between four functional units within a  

model. 
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data0

data1

data2

 

Figure 15 – Example of Data Flow Between Four Functional Units 

As shown in Figure 15, four functional blocks exist named A, B, C, and D, and 

the data path we wish to trace originates in A, flows to B, C, and finally to D.  Although 

there is a single data path that links the four blocks, individual datum can be pipelined 

such that new datum can enter the data path before previous datum terminates at block D.  

The circles in the diagram indicate observation points with which the data is traced with 

MAT.  Thus, the trace begins in block A when the datum is created, and then an 

observation point exists as the datum arrives to block B, and similarly to block C and 

block D, and finally when the datum is terminated within block D.   

To apply the resource span event commands to this scenario, each observation 

point will yield a mat_span_event() command within the block that specifies the dataset 

and axis to be used for containing the track information.  In addition, each command will 

specify a tag, which is the internal signal or variable that contains the data.  Recall that 

the tag is the argument that associates events into a span.  Thus, the piece of datum traced 

through each block becomes the tag that assembles the event span.  The final point at 
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which the data trace is terminated within block D will yield a mat_span_end() 

command, which ends the span.  Note that this trace example depends upon the data 

currently flowing in the data path to be unique.  Otherwise, two spans that are destined to 

be distinct and disjoint may become integrated into a single long span, which is not the 

intention. 

The below Verilog code, though incomplete, illustrates the usage of the 

mat_span_event() and mat_span_end() commands to accomplish the described data 

trace for this system. 

 
module blockA (d_out) 
output [32:0] d_out; 
 
always @(posedge clkA) 
  if (create_data) 
    begin 
      … 
      $mat_clear_tag (“blocks”, “abcd_trace”, d_out); 
      $mat_span_event(“blocks”, “abcd_trace”, d_out, “CREATED_A”); 
    end 
 
endmodule 

 
module blockB (d_in, d_out) 
input  [32:0] d_in; 
output [32:0] d_out; 
 
always @(posedge clkB) 
  if (new_data) 
    begin 
      … 
      $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_B”); 
    end 
 
endmodule 
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module blockC (d_in, d_out) 
input  [32:0] d_in; 
output [32:0] d_out; 
 
always @(posedge clkC) 
  if (new_data) 
    begin 
      … 
      $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_C”); 
    end 
 
endmodule 

 
module blockD (d_in) 
input  [32:0] d_in; 
 
always @(posedge clkC) 
  if (new_data) 
    begin 
      … 
      $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_D”); 
    end 
  … 
  if (data_terminate) 
    begin 
      … 
      $mat_span_end(“blocks”, “abcd_trace”, d_in, “TERM_D”); 
    end 
 
endmodule 

 

Global Measurement Commands 

In contrast to the prior described commands that pertain to a particular resource, 

commands in this category capture data related to the overall model or simulation 

environment.  Note that the commands below do not contain a dataset parameter, as all 

global measurements belong to an internal MAT global dataset.  All axes specified in the 

global commands implicitly belong to this global dataset. 
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Global State Measurement 

This command captures the current state of the model or simulation, and stores it 

on the specified axis in the global dataset, along with the current simulation time and 

timeset time (if associated with the dataset.) 

 
HDL Syntax: mat_global_state (<axis>, <state>) 
C Syntax: mat_global_state (<axis>, <state>, <sim time>) 
  
Parameters: axis (string) Name of the axis where the global 

state data will be stored. 
 state (string) Name of the state to apply to the axis. 
 sim time (floating point) Simulation time of data capture. 

Table 13 – Command Syntax of mat_global_state() 

Example Usage 

The below example Verilog code shows how the arbitrary global state 

measurement command is used to describe the state of the model. 

 
always @(posedge clk) 
begin 
    if (hreset) 
      $mat_global_state (“hardware_reset”, “In Reset”); 
    else 
      $mat_global_state (“hardware_reset”, “Normal Operation”); 
end 

 

The above code shows that an axis hardware_reset is used to describe the state of 

the system being modeling.  When the model signal hreset is asserted, hardware_reset 

changes to the In Reset state.  When hreset is negated, the hardware_reset axis switches 

to the Normal Operation state.  Because the hreset signal presumably changes during 

simulation to indicate that the system is either being reset or not being reset, the use of a 

global state to track this activity is intuitive and natural. 
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Global Event Measurement 

Global event measurements record observations during simulation that pertain to 

the model or simulation environment.  Each global event data point records the name of 

the event, the time of observation, and the cumulative number of observations of the 

global event name. 

 
HDL Syntax: mat_global_event (<axis>, <event>) 
C Syntax: mat_global_event (<axis>, <event>, <sim time>) 
  
Parameters: axis (string) Name of the axis where the global 

event data will be stored. 
 event (string) Name of the event to be posted on the 

axis. 
 sim time (floating point) Simulation time of data capture. 

Table 14 – Command Syntax of mat_global_event() 

Example Usage 

The below example Verilog code shows how the arbitrary global event 

measurement command is used to denote temporal partitions during simulation. 

 
initial 
begin 
    $mat_global_event (“tests”, “Test #1”); 
    do_test_1(); 
    $mat_global_event (“tests”, “Test #2”); 
    do_test_2(); 
    $mat_global_event (“tests”, “Test #3”); 
    do_test_3(); 
    … 
end 

 

The above code shows that an axis tests is used to denote when test cases are 

applied to the model.  Presumably, each test is executed by the Verilog task do_test_1(), 

do_test_2(), and do_test_3(), and each test is preceded by a global event designating the 
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test to subsequently run.  Because each event records the time it was posted, the user 

knows when each test case began during the simulation. 

 

General MAT Commands 

The commands in this category pertain to management of tags, axes, and datasets 

throughout the simulation. 

 
Syntax: mat_clear_tag (<dataset>, <axis>, <tag>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis with the tag to be 

cleared. 
 tag (string) Name of the tag to be cleared. 
 
Syntax: mat_clear_axis (<dataset>, <axis>) 
  
Parameters: dataset (string) Name of the dataset. 
 axis (string) Name of the axis where all tags will be 

cleared. 
 
Syntax: mat_reset () 
  
Parameters: <none>  

Table 15 – General MAT Commands 

The command mat_clear_tag() allows the user to clear a tag on a specific axis, 

such that the next time the tag is referenced by a DCIL command, it will be as if the tag 

was referenced for very first time.  Similarly, the command mat_clear_axis() behaves 

exactly like mat_clear_tag() for all tags ever referenced on the axis. 

When the command mat_reset() is called, all axes within all datasets are have 

their tags cleared.  This is an effective reset of the DCIL state information. 
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 TOOL CONFIGURATION 

The Model Analysis Tool supports configurability via use of ASCII-text readable 

configuration files.  MAT supports two types of configuration files, and both are 

formatted in XML (eXtensible Markup Language), and parsed by the DCIL when a 

simulation begins.  These files allow the user to modify the behavior of MAT before 

simulation, rather than apply configurations via user commands that would require a 

recompilation of the simulation environment. 

Global Configuration File 

The MAT global configuration file is used to apply user selections for the DCIL 

to output data to the screen and/or MATServ, and to specify the alternate configuration 

file for dataset management.  When the DCIL library is first loaded during simulation, it 

searches for the global configuration file named MAT_config.xml.  An example of this 

global configuration file is found below. 

 
<?xml version="1.0" encoding="iso-8859-1" ?> 
<mat_config ver="1.0"> 
    <output_drivers flush_interval="5000"> 
        <text enable="1"/> 
        <visual enable="1" ip="192.168.1.2" port="40001"/> 
    </output_drivers> 
    <dataset_config filename="dataset_config.xml"/> 
</mat_config> 

Table 16 – Example Global Configuration File 

As shown, there are essentially two major sections of MAT configuration.  The 

first section encompasses the output_drivers block, which designates the available output 

drivers in the DCIL.  The output_drivers block contains a configuration for the 

flush_interval.  The value assigned to this modifier determines how many MAT data 

objects will be queued within the DCIL before they are flushed to all the enabled output 
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drivers.  In the above example, five-thousand data objects will be enqueued before they 

are all flushed to the enabled output drivers.  Because TCP/IP communication with 

MATServ takes time, sending each data object as it is created will immensely slow down 

the simulation.  However, storing all data objects during simulation may require a large 

amount of system memory.  Thus, this number should be set to an appropriate value such 

that the simulation is not grossly affected by data object flushes to MATServ, and yet the 

memory required to store the data objects on the simulating workstation is not 

proportionally large. 

Within the output_drivers block, each output driver is configured for enablement.  

Currently, MAT supports the text output driver that displays captured data to the screen, 

and the visual output driver which routes data to MATServ for eventual visualization by 

MATView.  Each output driver can be enabled by setting the enable modifier to ‘1’, or 

disabled by setting the enable modifier to ‘0’.  The visual output driver contains two extra 

configurations.  The ip field designates the TCP/IP address of the workstation where the 

MATServ server is running, and the port field designates the TCP/IP port number that 

MATServ is setup to listen. 

The second configuration supported by the MAT global configuration file is the 

location of the MAT dataset configuration file.  As shown in Table 16, the dataset_config 

field contains a modifier filename that should point to the path and filename of the dataset 

configuration file.  If this item is not specified, no further configuration parsing will be 

performed by the DCIL. 

Dataset Configuration File 

The MAT dataset configuration file is used to fine tune which datasets or axes 

within datasets will be enabled for text display or visualization.  In addition, the auto-

generation of event axes is enabled via this file.  This file is read by the DCIL after 
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parsing of the global configuration file, which specifies the path and filename of the 

dataset configuration file.  An example of a dataset configuration file is shown in Table 

17 below. 

 
<?xml version="1.0" encoding="iso-8859-1" ?> 
<dataset_config> 
    <dataset name="dataset1"  text="1" visual="1"/> 
    <dataset name="dataset2"  text="0" visual="0"/> 
    <dataset name="dataset2" axis="state1" visual="1" 
             coverage_axis="cs1" coverage_count="3" /> 
    <dataset name="dataset2" axis="state2" visual="1" 
             coverage_axis="cs2" coverage_count="4" /> 
    <dataset name="dataset3" axis="arb_grant" text="1" visual="1" 
             coverage_axis="cvg_grant" coverage_count="3" /> 
</dataset_config> 

Table 17 – Example Dataset Configuration File 

As shown, only one type of configuration block exists, namely the dataset 

configuration line.  Each line targets specific configuration modifiers for a particular 

dataset or axis within a dataset.  If only the dataset is specified, all subsequent 

configurations on the line will apply to the entire dataset.  In contrast, if a dataset and an 

axis is specified, all subsequent configurations on the line will apply only to the axis in 

the dataset.  In addition, since this dataset configuration file is parsed from top to bottom, 

any configurations that refer to the same dataset and/or axis as previously configured 

above will override the above setting.  For example, dataset2 is first configured with both 

the text and visual output drivers disabled.  Because no axis is specified, this 

configuration applies to all axes created within dataset2.  However, subsequent 

configuration lines enable the visual output driver for axes axis1 and axis2, so these axis 

settings override the previous disablement of all output drivers for dataset2. 

For most dataset configuration lines, two configuration modifiers are available to 

set the enablement of the output drivers on a dataset basis, or dataset and axis basis.  The 
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text modifier is set to ‘1’ for to enable screen display of information pertaining to the 

specified dataset, or dataset axis.  Likewise, the visual modifier is set to ‘1’ to enable data 

object transmission to MATServ for the specified dataset, or dataset axis.  If either 

modifier is set to ‘0’, the corresponding output driver is disabled.  If the MAT global 

configuration file disables an output driver, any enablement settings for that output driver 

in the dataset configuration file are ignored. 

Automatic State Coverage Axis Generation 

For axes that will contain resource state data points, which are generated by the 

mat_set_state() command, additional configuration modifiers are available in the dataset 

configuration file.  The coverage_axis and coverage_count modifiers of a dataset 

configuration line are used in conjunction to enable the auto-creation of an axis, and 

generation of resource events on that axis based on changes on the state axis.  The 

coverage_axis modifier specifies the name of the event axis to be automatically created, 

and used for the DCIL-generated events.  Additionally, the coverage_count modifier 

specifies the number of states on the state axis (including the current state) to be used for 

formulate the event posted on the coverage_axis.  The benefit of this built-in feature is 

that events can automatically published that show the state transition coverage of a 

resource.  This can aid in the analysis of resource state transitions, versus the more basic 

analysis of tracking individual states. 
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Figure 16 – Example State Axis and Auto-generated Coverage Axis 

Referring to the last configuration line for dataset3 in Table 17, and example 

depicting this functionality is shown in Figure 16 above.  The state axis arb_grant 

consists of state data points captured during a simulation via use of the mat_set_state() 

command.  Because the dataset configuration file stipulates that a separate coverage axis 

is to be maintained for this state axis, the cvg_grant axis will be created by the DCIL.  

Additionally, the configuration specifies that the three most recent states will be 

concatenated to become the posted event on the cvg_grant axis.  Thus, when the third 

state transition is encountered on the arb_grant axis, the DCIL automatically 

concatenates the current and previous two states to formulate an event string, which is 

posted on the cvg_grant axis.  This action occurs for every subsequent state change on 

the arb_grant state axis until the simulation completes. 
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MATSERV DATA SERVER 

MATServ provides online storage for data objects generated during simulation by 

the DCIL.  The MATServ data server is an executable application that may reside on the 

same workstation as the executing simulation, or on a different workstation.   

When the simulation is initiated, the DCIL attempts to establish a connection with 

the MATServ server at the TCP/IP address and port number designated in the MAT global 

configuration file.  If the connection cannot be established, the DCIL will wait until the 

connection is made.  When the network connection is made, the DCIL allows simulation 

to proceed, and MATServ will begin to receive captured data objects over this connection. 

To start the MATServ server, the executable binary needs to be called with 

command-line parameters to define the TCP/IP port numbers to listen for connection 

requests from both the DCIL and MATView.  An example command-line execution of 

MATServ is found below: 

 
matserv –portin 40000 –portout 40001 

 

The command-line switch -portin denotes the TCP/IP port number that will be 

monitored for incoming connections from the DCIL.  Similarly, the -portout switch 

denotes the port number monitored for connections from MATView.  The port numbers 

must not be the same. 

When executed, the server runs in the foreground and waits for connection 

requests from either the DCIL or MATView.  Information is displayed on the screen when 

connections are established or dropped.  The server can be exited by hitting Control-C, 

which will delete all stored data objects on the server.   
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MATVIEW VISUALIZATION CLIENT 

The MATView visualization client is the interface between the MATServ and 

visualization of the data captured during simulation.  MATView downloads data objects 

stored by MATServ, and translates them into the OpenDX data model which is exported 

to a file for use in the OpenDX Data Explorer [3] visualization application.  MATView is 

executed via the following syntax: 

 
matview –server 192.168.1.1:40001 

 

When the MATView application executes, it first attempts to connect with the 

MATServ data server using the command-line specified TCP/IP address and port number 

to which the server is listening.  MATView will wait until the connection is established, 

and then start communication by requesting a list of datasets for which data objects 

currently reside on MATServ.  This allows MATView to determine which datasets have 

data objects currently available for download.  MATServ also provides the current 

number of data objects available for each dataset.  MATView uses this information to 

determine how many new data objects are available since the last communication with 

MATServ.  If new objects are available, they are downloaded by MATView via the 

network connection, and recreated into memory-allocated MAT data objects.  

Subsequently, the objects are translated into the OpenDX data model.  Once all data 

objects are received from MATServ, the OpenDX data model is exported to a text data 

file.  This file is read by the OpenDX Data Explorer application to load all the data points 

created during simulation and allow manipulation and visualization via the Data Explorer 

tool. 
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Visualization Using OpenDX Data Explorer 

After MATView has written the OpenDX data model into a text file, it can then be 

opened via the OpenDX Data Explorer application.  Data Explorer is a front-end 

graphical user interface (GUI) responsible for data import, manipulation of the data 

model, and highly-configurable visualization via a data-driven graphical programming 

language.  Since MATView exports a file containing a flattened OpenDX data model 

representation of the captured data points from simulation, Data Explorer only needs to 

import this file, and all datasets and axes become available by the original names used 

when created in MAT. 

An in-depth description of the open-source Data Explorer application is beyond 

the scope of this document.  Although the Data Explorer application is employed in this 

current release of MAT to ultimately handle the visualization of the collected data, future 

releases will encapsulate the visualization in a MATView GUI, and enable a more unified 

and user-friendly interface for manipulating and displaying the captured simulation data.  

As an example of the type of visualizations available, Figure 17 below shows an actual 

plot created in Data Explorer with data captured by MAT. 

 



 

Figure 17 – Example MAT Output Viewed in OpenDX Data Explorer 

The data rendered in the above visualization was gathered during a SystemC 

simulation where the number of bus transactions for a particular system interface was 

monitored over simulation time.  The figure shows two variations of representing the 

same data, one overlaid upon the other.  The line representation on top displays a 

standard two-dimensional graph of the data, plotted as bus transactions per unit time.  

Below the graph is an alternate colored glyph representation, where each data point in 

time is depicted as a sphere.  As the value of each data point changes over time, the size 

of sphere changes proportionally, and the color shifts in spectrum to aid the visualization.  

Thus, as the values increase on the y-axis in the top graph, the spheres become larger, and 

shift from blue to green, yellow, orange, and red.  The advantage of the colored glyph 

representation is that the sphere sizes and colors are normalized to the data, such that 

maximum value data points will colored in red, and minimum data points will be colored 
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in blue.  If multiple plots are observed together, the engineer can easily find low and high 

values measured over time by simply observing the glyph color. 
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CHAPTER 4 

Model Analysis Tool Implementation 

OVERVIEW 

The Model Analysis Tool software is comprised of three separate entities that 

each work together to enable data capture from the simulation environment, store and 

maintain the MAT data model representation on a network server, and visualize the 

captured data.  Respectively, these entities are named the Data Capture Interface Library 

(DCIL), MATServ, and MATView.  Each library or application is written in C++ using an 

object-oriented design methodology to maximize reuse and enable future expansion by 

clear partitioning of class roles and responsibilities.  This chapter is dedicated to an 

explanation of the MAT implementation for each one of the entities that make up the 

Model Analysis Tool. 

DATA CAPTURE INTERFACE LIBRARY 

The DCIL is the interface between the simulation and MATServ, providing the 

user with all the commands delineated in the previous chapter.  The construction of this 

interface library began with a logical partitioning of functionality, which translated into 

an object-oriented class organization.  The functional responsibilities of the DCIL are 

listed in Table 18 below, alongside the abbreviated name used thereafter to reference 

each functional responsibility. 
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Functional Responsibility Abbreviated Name 
1. Provide the command interface to the user. Command Interface 
2. Provide a means of run-time configuration. Configuration Interface 
3. Provide means of routing user commands to the 

appropriate internal execution unit. 
Command Bridge 

4. Provide individual execution units to handle user 
commands. 

Execution Units 

5. Provide means of conversion of the captured raw data 
from the simulation environment into the internal 
MAT data model. 

Data Model 

6. Provide a standardized and extensible mechanism by 
which MAT data model objects flow out of the DCIL. 

Output Interface 

Table 18 – DCIL Functional Responsibilities 

Command Interface 

The DCIL Command Interface is comprised of command classes, and several 

interfaces that provide the commands to the user in the form of global function calls.  

Each interface is targeted for a different version of the library, depending upon the 

language for which the DCIL will be compiled (Verilog, C, C++, SystemC). 

Each interface consists of the global functions that are called by the user, 

comprising the user commands available to the simulation environment.  Every function 

creates an object of a command class, or a command object, which encapsulates the 

respective user command and associated arguments passed in via the function call.  Then, 

the command object is submitted internally to the Command Bridge for routing and 

execution. 

 



 

Figure 18 – UML Diagram of the DCIL Command Classes 

As shown in preceding figure, all command classes derive from 

MAT_cmd_base, which is a virtual base class that provides all derived classes with a 

command identifier, and the target for the command.  At a minimum, all command 

objects must set these two fields within the base class.  The target defines the destination 

Execution Unit for the command within the DCIL; this will be detailed in the Command 

Bridge section below.  The command identifier defines the specific command that will be 

executed once the command object reaches its destination.  Thus, each command class 

acts as a template for groups of commands pertaining to a certain functional category that 

share common data fields.  These data fields are used to pass information to the targeted 

Execution Unit within the DCIL. 

There are three derived command classes that extend MAT_cmd_base to provide 

additional data fields used for supplying relevant information for each command.  

Command objects created from the MAT_cmd_timeset class are used by the timeset 

creation commands listed in Table 2.  Command objects created from the 
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MAT_cmd_dataset class are used by the dataset creation and all measurement 

commands listed in Table 3 through Table 15.  The class MAT_cmd_config is used to 

create command objects that modify the configuration of MAT on-the-fly.  These 

commands are not accessed externally via function calls, but rather internally by the 

Configuration Interface and other units to set and read configuration data. 

Configuration Interface 

Besides the Command Interface, the Configuration Interface is the only other 

method by which information enters the DCIL.  This interface is activated when DCIL is 

first loaded, which causes the various XML configuration files to be parsed.  The 

parameters within these configuration files direct certain dynamic behaviors of the DCIL 

during simulation, as described in the previous chapter. 

 



 

Figure 19 – UML Diagram of DCIL Configuration Classes 

As shown in Figure 19 above, there are several hierarchies of classes that 

implement the configuration functionality.  MAT_config_base is a virtual base class that 

has the MAT_config_default and MAT_config_dataset classes derived from it.  

Respectively, these derived classes perform the actual parsing of the main MAT 

configuration file, and the dataset configuration file via use of the MAT_XML_reader 

helper class.  The MAT_config_base class maintains a class instance registry of objects 

that are derived from it, which is used when parameter parsing is initiated. 

After the configuration Execution Unit class MAT_config_if is instantiated at 

start-up by the MAT_top top-level class, the init_parms() method of MAT_config_if is 

called, which cycles through all registered objects of MAT_config_base, calling the 

handle_options() method on each derived class.  This method initiates the XML parsing 
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of all configuration files detected, and subsequent insertion of the parameters as name-

value pairs into a data structure in MAT_config_if.  Later, when a parameter is 

referenced by a command object being executed by MAT_config_if, these same data 

structures are referenced to find and return the parameter value. 

Command Bridge 

The previously described Command Interface creates command objects that 

encapsulate the user command and associated parameters.  After each command object is 

created, it is submitted to the Command Bridge to be routed for execution.  The 

Command Bridge receives the command objects, and based upon their target identifier set 

by the Command Interface, the object is routed to the appropriate Execution Unit that will 

handle it.   

 

 

Figure 20 – UML Diagram of the DCIL Command Bridge Classes 

As shown in Figure 20 above, the MAT_interface_base is a virtual base class 

that currently has three classes deriving from it: MAT_config_if, MAT_dataset_if, and 
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MAT_time_if.  When each derived class is instantiated, it calls the submit_name() 

method of the MAT_interface_base class to register its unique identifier and a reference 

to itself.  Later, when the Command Interface creates a command object as a result of a 

user command call, the object is sent to the Command Bridge via a call to the static 

method start_cmd() in the MAT_interface_base.  This method determines where to 

route the command object based upon its target identifier, which corresponds to the 

unique identifier specified by the derived Execution Unit classes during registration.  If 

the identifier exists in the registry, the command object is sent to the Execution Unit via 

the virtual submit_cmd() method.  If the identifier does not exist in the registry, the 

command is finished, and an error code is returned to the Command Interface designating 

the command did not complete successfully. 

Execution Units 

The Command Bridge routes all inbound command objects to the appropriate 

Execution Unit for handling of each command.  The Execution Units are derived classes 

from the MAT_interface_base virtual base class, as shown in Figure 20.  Each of these 

units have various interactions with other objects, so a discussion of each Execution Unit 

is warranted. 

The MAT_dataset_if class is the unit responsible for handling all dataset creation 

and measurement commands objects.  The classes utilized during the execution of these 

commands are shown in Figure 21. 

 



 

Figure 21 – UML Diagram of the DCIL Dataset Execution Unit and Related Classes 

As shown in the preceding figure, the MAT_dataset_if class has association with 

a number of other classes in order to execute received dataset command objects.  

Command objects of the class MAT_cmd_dataset are received via the submit_cmd() 

method in MAT_dataset_if, which are subsequently parsed to determine the specific 

command sent in the command object.  If the command object calls for the creation of a 

data point, the fields of the object are parsed, and the appropriate Data Model object is 

created and filled with the required data to describe the data point.  The 

MAT_cmd_config class is used during some command executions to retrieve 

configuration parameters from the Configuration Interface.  MAT_dataset_track is a 
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data management class that enables storage of temporary Data Model objects for 

measurement commands that require use of previously created data objects.  In addition, 

this class tracks datasets and their timeset association, as well as axes and the type of data 

associated with them.  Finally, the MAT_output_base class is used via a static method 

call to submit_data() to send formulated Data Model objects to the Output Interface. 

The MAT_config_if instance mentioned earlier in the Configuration Interface 

section is an Execution Unit, which manages the parsing of configuration files at DCIL 

load time, and responds to command objects during simulation that request parameter 

values.  As MAT_cmd_config command objects are received, they are parsed by the 

MAT_config_if class to determine which specific configuration command is to be 

executed, and the internal configuration parameter data structures are queried to return 

requested parameter values (via the same command object) to the caller. 

Finally, the MAT_time_if class is responsible for handling all 

MAT_cmd_timeset commands objects, and maintaining all timeset state information. 

 

 

Figure 22 – UML Diagram of the DCIL Timeset Execution Unit and Related Classes 
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The MAT_time_if class instance receives MAT_cmd_timeset command objects 

from the Command Bridge, and subsequently parses the object to determine the specific 

type of command to be executed.  This Execution Unit maintains a data structure that 

tracks the timeset name and the current state of that timeset via use of the MAT_timeset 

class.  Every timeset is associated with its own MAT_timeset object, and the respective 

timeset time can be queried and updated (incremented) via method calls to this object.  

Note that when a dataset is created with timeset association, a pointer to the respective 

MAT_timeset object is obtained and used for acquiring the current timeset time directly 

without needing to perform the timeset name look-up via this interface. 

This employed methodology of using command objects generated by a Command 

Interface, and a Command Bridge for routing commands to specialized Execution Units 

has the advantage of logically separating the command caller from the command handler.  

As new commands are added to the DCIL, additional command object classes can be 

derived from MAT_cmd_base, and new Execution Unit classes can be derived from 

MAT_interface_base.  With the target identifier used as the link to routing command 

objects to the correct interfaces to operate on them, no other code within the software 

hierarchy needs to be modified.  This yields an immediate benefit during software 

validation because code that was not changed does not need to be re-verified. 

Data Model 

The MAT Data Model tracks all datasets, axes, and data objects created in the 

dataset Execution Unit as a result of user commands during simulation.  The Data Model 

is constructed as a set of derived classes from a virtual base class, as shown in Figure 23 

below.  These classes are used throughout the DCIL, MATServ, and MATView as the 

means by which MAT data objects are temporarily or persistently stored in each library 

or application. 



 

 

Figure 23 – UML Diagram of the MAT Data Model Classes 

The virtual base class MAT_dataobj_base contains all the common information 

stored for any data point created.  Every derived class contains additional fields specific 

to the type of data being stored.  For example, the derived MAT_dataobj_delta class 

contains a field that stores the value of the data point, in addition to all the fields inherited 

from MAT_dataobj_base.  Similarly, the MAT_dataobj_event class contains fields 

needed to store events data objects, such as the event name, number of times the event 

has occurred, and the simulation and timeset time since the previous event.  The DCIL 
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class MAT_dataset_track shown in Figure 21 is utilized for temporary storage of all 

data objects created from the above classes. 

Output Interface 

The Output Interface is responsible for receiving Data Model objects and 

translating them for subsequent serial communication on the various output drivers 

available. 

 

 

Figure 24 – UML Diagram of the DCIL Output Interface Classes 
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As shown in the above figure, the MAT_output_base is a virtual base class that 

receives data objects sent from the MAT_dataset_if Execution Unit.  The data objects 

are submitted to the static submit_data() method in MAT_output_base.  Once received, 
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identical copies of the objects are created, and are queued up internally in this class until 

an data object count threshold is reached.  The threshold is set via the flush_interval 

configuration parameter in the MAT global configuration file. 

The output driver classes MAT_text_output and MAT_DX_output are derived 

from MAT_output_base, and act upon the data objects as they are flushed from the 

queue within the base class.  At construction in MAT_top, each output driver class 

registers itself with MAT_output_base.  In addition, MAT_output_base uses 

configuration parameters obtained by the Configuration Interface to determine the 

enablement status of each output driver.  Later, when data objects are received and 

eventually flushed by the MAT_output_base class, the group of objects are sent to each 

registered and enabled driver in turn.  Once all output drivers have been sent the group of 

data objects, they are dequeued and deleted from the MAT_output_base class. 

The MAT_text_output driver is responsible for printing the data objects to the 

screen, detailing the information present for each data point.  This driver is particularly 

useful for DCIL debugging, as well as developer verification that data objects are created 

as expected for given user command stimuli.  The output of this driver is textually 

identical to debug screen output that can be generated for MATServ and MATView, which 

aids in ensuring that data objects are received and retransmitted without inadvertent loss 

of information. 

The MAT_DX_output driver is responsible for serializing and transmitting data 

objects over a network channel to MATServ for online storage.  When this driver receives 

a group of data objects from the base class, each object is parsed to determine the object 

type, and then it is sent field-by-field over the network channel.  The MAT_socket helper 

class is used to accomplish the network transfer via ASCII text transfer over a TCP/IP 

socket.  This class interfaces with an open-source TCP/IP sockets library to accomplish 
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the network communication.  The MAT_DX_output driver and MATServ observe a 

meta-protocol for transmission of data objects, which includes the ability to retry 

transmissions if data was not received properly by MATServ. 

MATSERV 

MATServ is the interface between the DCIL and MATView, providing online 

storage of received data objects during simulation, and enabling MATView to retrieve 

data objects at its own desired rate.   

The construction of this application began with a logical partitioning of 

functionality, translating into an object-oriented class organization.  The functional 

responsibilities of  MATServ are listed in Table 19 below, alongside the abbreviated name 

used thereafter to reference each functional responsibility. 

 
Functional Responsibility Abbreviated Name 

1. Provide a TCP/IP socket interface for inbound data 
object transmission from the DCIL. 

Inbound Interface 

2. Provide a means of persistent data object storage. Data Storage 
3. Provide a TCP/IP socket interface for outbound data 

object transmission to MATView. 
Outbound Interface 

Table 19 – MATServ Functional Responsibilities 

The entire class hierarchy for MATServ can be found in Figure 25 below, and will 

be referenced for subsequent discussions of functionality. 

 



 

Figure 25 – UML Diagram of the MATServ Classes 

Inbound Interface 

The Inbound Interface is responsible for handling communication as a network 

server for the DCIL to receive inbound serialized data objects, and translating them into 

memory-allocated data objects with the appropriate class designation.  As shown in the 

above figure, the class MATS_inbound_server is the interface instantiated by the 

application top-level MATS_top class to handle the receipt of data objects from the 

DCIL.  This class instantiates MATS_inbound_server_socket as the actual TCP/IP 
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socket server, and establishes this server as a free-running thread.  When the DCIL 

Output Interface communicates with this Inbound Interface, data objects are streamed as 

ASCII text across the network socket, and this free-running server thread captures the 

text and translates it into the original data objects.  The newly created data objects are 

then sent to the Data Storage repository. 

Data Storage 

The Data Storage interface is responsible for maintaining all received data objects 

from the Inbound Interface, and providing a mechanism for retrieval by the Outbound 

Interface.  The MATS_dataobj_storage class implements the storage, and also 

maintains a list of the datasets with data objects currently in storage.  This information is 

eventually used by MATView to determine which datasets have data points available for 

plotting. 

As each data object is translated by the Inbound Interface, it is submitted to the 

static instantiation of MATS_dataobj_storage via the add_dataobj() method.  This is the 

only method by which data objects are inserted into storage.  Later when data objects are 

retrieved by the Outbound Interface, the get_available_datasets() and 

get_dataobj_container() methods are used to query the database and retrieve objects, 

respectively. 

Outbound Interface 

Over the course of a simulation, data objects arrive into Data Storage and are 

subsequently available for retrieval by MATView.  The Outbound Interface is a network 

server that handles requests from MATView, and subsequently decomposes and transmits 

data objects over a TCP/IP socket.  The MATS_outbound_server class instantiates 

MATS_outbound_server_socket as an object in a free-running thread that continually 
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monitors for inbound socket connections from MATView.  Requests may arrive for the 

availability of data objects, and this interface will respond with the current datasets that 

have data objects in storage, and the corresponding number of data objects available for 

each dataset.  Alternately, requests may arrive from MATView to receive data objects 

from a specific dataset.  In this case, MATView specifically requests the dataset, and the 

number of objects from the dataset.  In this way, MATView can track how many objects 

have been received between update requests to MATServ, and thus it can incrementally 

acquire new data objects as they become available in the Data Storage. 

MATVIEW 

MATView is the visualization front-end application which communicates with 

MATServ to obtain data objects, and produces data usable by OpenDX for subsequent 

visualization and manipulation. 

The MATView application has several functional responsibilities which translate 

into an object-oriented implementation.  These responsibilities are listed in Table 20 

below, alongside the abbreviated name used thereafter to reference each functional 

responsibility. 

 
Functional Responsibility Abbreviated Name 

1. Provide a TCP/IP socket interface for inbound data 
object transmission from MATServ. 

Inbound Interface 

2. Provide a facility for translation of MAT data model 
objects to the OpenDX data model. 

Model Translation 

Table 20 – MATView Functional Responsibilities 



Inbound Interface 

The Inbound Interface is responsible for receiving serialized data objects from 

MATServ via a TCP/IP network connection, and translating them into memory-allocated 

data objects with the appropriate class designation.   

 

 

Figure 26 – UML Diagram of the MATView Inbound Interface Classes 

As shown in the above figure, the MATV_data_access class is instantiated by the 

top-level class for this application, MATV_top.  The MATV_data_access class provides 

methods by which the Model Translation interface will retrieve objects from MATServ, 

and manipulate the data object cache local to the MATView application.  The 

MATV_socket class and its helper MATV_inbound_client_socket handle all TCP/IP 

socket communication with MATServ.  MAT data model objects are stored in the static 
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MATV_dataobj_storage data management class, which is referenced by 

MATV_data_access for data retrieval once the download of data objects from MATServ 

has completed. 

Model Translation 

The Model Translation interface is responsible for translating MAT data objects 

received via the Inbound Interface into the OpenDX data model.  This conversion process 

is necessary before the data is exported for use by the OpenDX visualization tool. 

 

 

Figure 27 – UML Diagram of the MATView Model Translation Classes 

As shown in the above figure, MATV_top has a reference to the same 

MATV_data_access object used for MAT data object storage after retrieval from 

MATServ.  The implementation in MATV_top retrieves all data objects of a specified 

dataset, and then uses the MATV_object_translate class to perform a translation of each 
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data object into the OpenDX data model.  The OpenDX data model objects created after 

translation are stored in the MATV_datamodel_storage class object.  Finally, after the 

MATV_top implementation retrieves all available MAT data objects for all datasets 

present in MATServ, and subsequently translates them to OpenDX data objects, the 

OpenDX data model is exported to a text file that can be read by the OpenDX Data 

Explorer for visualization and manipulation. 

OpenDX Data Model 

The data model that is centric to the OpenDX libraries and Data Explorer 

application is organized in a hierarchical fashion.  The hierarchy is analogous to the 

hierarchy of the MAT data model.  The concept of a MAT dataset that contains related 

data on separate axes corresponds to an OpenDX Field.  Similarly, the MAT axis 

corresponds to an OpenDX Array, which is a component member of a field.  Thus, each 

axis within a dataset corresponds to an OpenDX array within a field.  In addition, the 

simulation time and timeset time axes in a dataset which are maintained by the DCIL 

during simulation correspond to additional and separate OpenDX arrays in the field.   

OpenDX arrays are simply an ordered collections of individual datum, 

comparable to a simple C-language array.  MAT utilizes the arrays within a field in a 

positional fashion, such that all elements in all arrays for a specific index are potentially 

related.  The simulation time array component of a field contains all the times during 

simulation when a piece of data was captured on any axis within the dataset.  For some 

positions within the simulation time array, every other array within the field will have a 

piece of data to correspond with that simulation time, which will be located in the same 

array index as the simulation time.  This scenario occurs when data was collected for 

every axis in a dataset during a given simulation time.  For other positions within the 

simulation time array, not all arrays will contain a data value that corresponds to the 
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simulation time.  This scenario occurs when not all axes in a dataset have captured data 

for a given simulation time.  In this case, additional arrays in the field are used to denote 

that a particular position for an array is invalid, indicating that no data exists for the 

corresponding data array index position.  Thus, the additional array in the same field, 

called an invalids array, is associated with a data array that contains captured data values, 

and indicates whether each position within the array has valid or invalid data.  Typically 

there is one invalids array for every data array in a field. 
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CONCLUDING REMARKS AND FUTURE WORK 

The development of this project from original concept to implementation and 

subsequent documentation in this report consisted of nearly one year of work, mostly 

taking place in the evenings.  The original concept was defined and documented in a 

specification, which was refined via many iterations of thought long before 

implementation began.  Rather than ascribing to the notorious "ready-fire-aim" 

methodology of software development, the process of completely specifying the tool 

functionality up front was employed, and undoubtedly saved many hours of rework that 

would have ensued after dead-end paths were finally realized.  Conducting thought-

experiments, imagining real-world usage scenarios, devising the methodology for an 

object-oriented class organization, and researching existing graphical visualization tools 

contributed to the refinement process, which lasted nearly four months.  In retrospect, 

four months of planning was not long enough, but there were bounds on the project 

imposed by the desire to eventually graduate. 

The remainder of the time spent on this project encompassed the software 

implementation.  During that time, several meetings with my advisors proved beneficial 

as I provided the status of my progress, as well as received feedback that brought to light 

facets of the project that I did not originally examine.  Admittedly, one portion of the 

project that was not completely conceived before implementation began was the 

partitioning of the tool into three separate entities (DCIL, MATServ, MATView).  Only 

during the implementation phase and subsequent self-deliberation of how to drive the 

data visualization interface did I realize that the tool needed to be partitioned into at least 

two asynchronously connected pieces.  In fact, I eventually determined that the tool 

should be partitioned into three separate pieces, each connected via a network interface to 
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allow for a distributed usage model.  This caused a substantial progress interruption as 

the network programming aspect of the tool was researched.  After nearly a half-month of 

research and testing, an open-source TCP/IP C++ Sockets library was selected.  Though 

fairly stable, several iterations of bug reporting and library fixes were required before it 

could be used in my application.  The saving grace was that the library developer was 

more than willing to quickly address all the problems I encountered during its integration 

into my application; otherwise, development progress could have grinded to a halt. 

There are plans for additional upgrades and refinement of the Model Analysis 

Tool after this report is published.  New hardware description languages and electronic 

system level languages will be investigated for MAT support.  Additionally, the complete 

integration of the OpenDX tool with MATView is a key upgrade slated to occur.  This 

will remove the need to run OpenDX Data Explorer as a separate application.  Rather, 

the OpenDX API will be called from within the MATView application, and all 

visualization and associated manipulation will be controlled via the MATView GUI.  This 

will also relieve the user from the need to learn the extensible but often overwhelming 

Data Explorer application interface, as MATView will hide that complexity with a 

simpler GUI with preconfigured visualization options. 

Additionally, I plan to explore the Java language for possible use.  Several 

features of MAT that required external library support are native to Java.  Given the 

stabilization of the language, feature set, portability, and performance improvements of 

the virtual machines, Java may be a possible candidate for a language remap of a portion 

or the entire tool. 

Finally, I envision building a testbench environment that surrounds MAT for the 

purpose of tool validation.  Random tests consisting of DCIL command sequences are 

generated, applied to the tool during simulation, and stored in MATServ.  Subsequently 
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the testbench will retrieve the MAT data objects from MATServ and compares them with 

the anticipated results based upon the original random test case.  This self-checking 

environment will test the path from original data capture to MAT data model conversion 

and storage in MATServ, and will enable extensive software validation for all future 

revisions of the tool. 
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