

Copyright

by

Matthew Genovese

2005

A Tool for Dynamic Data Capture and Visualization in

Heterogeneous Simulation Environments

by

Matthew Genovese, B.S.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2005

A Tool for Dynamic Data Capture and Visualization in

Heterogeneous Simulation Environments

Approved by
Supervising Committee:

Dedication

To my parents Michael and Maria, my ever patient wife Jennifer, and children

Caleb and Emily – my absolute pride and joy.

 v

Acknowledgements

I would first like to thank Dr. Margarida Jacome for agreeing to be my faculty

supervisor, and for her constant availability for discussion and guidance. I am grateful to

my advisors Steven Smith and Mark McDermott, who helped me develop and cultivate

the idea for this project in the first place. Thank you to Dr. Adnan Aziz for generously

giving of his free time to review the specification for this project. Thank you to Anders

Hedström who provided tremendous support and speedy enhancement of his open-source

C++ TCP/IP Sockets library. I am grateful to the OpenDX community on the user

support e-mail lists, where people whom I have never met authored detailed and

immensely helpful responses to my newbie questions. Finally, thank you to Rich

Lathrop, my first MAT alpha-site user, who provided me with valuable feedback and

constant encouragement as he used the tool for data acquisition during simulation of his

own graduate project.

December 2, 2005

 vi

Abstract

A Tool for Dynamic Data Capture and Visualization in

Heterogeneous Simulation Environments

Matthew Genovese, M.S.E.

The University of Texas at Austin, 2005

Supervisor: Margarida Jacome

System performance is important to accurately validate as early as possible in the

design process. Throughout the process of design refinement, engineers assemble

heterogeneous simulation environments that commingle sub-models at various levels of

abstraction, using assorted hardware description languages and system-level design

languages. Continuous performance validation can be possible in these environments

throughout the architectural exploration process, and subsequently during design

implementation. In order to free engineers to measure performance for any resource

within the heterogeneous system during simulation, it is necessary to capture data from

any point of abstraction within the model to a single database. Consequently, by

providing a graphical and configurable visualization interface into this database, the

architect can easily group data and quickly assemble key metrics that enable conclusions

to be made about system performance. This report is the culmination of a project

undertaken to develop a tool that implements the above proposal.

 vii

Table of Contents

List of Tables ...x

List of Figures .. xi

List of Figures .. xi

CHAPTER 1 1

Preface..1
Abstract ...1
Background...1
Motivation...3

CHAPTER 2 5

Introduction..5
Resources and Performance Measurement ...5

Resource Utilization...6
Resource Performance ...7
Global Measurements ..9

Model Analysis Tool Overview..10
Key Features ..10
User Command Taxonomy..11
Visualization ..12

CHAPTER 3 13

The Model Analysis Tool ..13
High-Level Architecture ...13
MAT Data Model..15

A Notion of Time...15
Data Model Organization...18

Data Capture Interface Library ...20
Timeset Creation..23

 viii

Dataset Creation...25
Resource Utilization Assessment...27
Resource Performance Assessment ...29
Global Measurement Commands...49
General MAT Commands..52

Tool Configuration..53
Global Configuration File ..53
Dataset Configuration File...54

MATServ Data Server ..58
MATView Visualization Client..59

Visualization Using OpenDX Data Explorer.......................................60

CHAPTER 4 63

Model Analysis Tool Implementation ...63
Overview...63
Data Capture Interface Library ...63

Command Interface..64
Configuration Interface..66
Command Bridge ...68
Execution Units..69
Data Model...72
Output Interface ...74

MATServ ..76
Inbound Interface ...77
Data Storage...78
Outbound Interface ..78

MATView...79
Inbound Interface ...80
Model Translation..81

 ix

CONCLUDING REMARKS AND FUTURE WORK 84

BIBLIOGRAPHY 87

VITA 88

 x

List of Tables

Table 1 – User Command Taxonomy..11

Table 2 – Timeset Commands ...23

Table 3 – Command Syntax of mat_init_dataset() ..25

Table 4 – Command Syntax of mat_set_state()...27

Table 5 – Command Syntax of mat_measure() ...29

Table 6 – Command Syntax of mat_measure_sum()...31

Table 7 – Command Syntax of mat_measure_delta()..33

Table 8 – Command Syntax of mat_measure_rate() ...35

Table 9 – Command Syntax of mat_measure_deriv() ...38

Table 10 – Command Syntax of mat_measure_time() ..40

Table 11 – Command Syntax of mat_event() ..43

Table 12 – Span Event Commands..45

Table 13 – Command Syntax of mat_global_state() ...50

Table 14 – Command Syntax of mat_global_event() ..51

Table 15 – General MAT Commands..52

Table 16 – Example Global Configuration File...53

Table 17 – Example Dataset Configuration File..55

Table 18 – DCIL Functional Responsibilities ...64

Table 19 – MATServ Functional Responsibilities..76

Table 20 – MATView Functional Responsibilities...79

 xi

List of Figures

Figure 1 – Example Depiction of a Resource State Measurement7

Figure 2 – Example Depiction of a Resource Span Measurement9

Figure 3 – Example of the Distributed MAT Architecture....................................14

Figure 4 – Timeset Tracking of Regularity in the Model17

Figure 5 – Timeset Tracking of Irregularity in Model...17

Figure 6 – Depiction of a Dataset ..18

Figure 7 – Depiction of Simple Value Measurements...30

Figure 8 – Depiction of Incremental Value Measurements31

Figure 9 – Depiction of Tagged Delta Measurements ...33

Figure 10 – Depiction of Tagged Rate Measurements ..36

Figure 11 – Depiction of Tagged Derivative Measurements.................................39

Figure 12 – Depiction of Tagged Time Measurements ...41

Figure 13 – Depiction of Resource Event Measurements43

Figure 14 – Depiction of Resource Span Event Measurements46

Figure 15 – Example of Data Flow Between Four Functional Units47

Figure 16 – Example State Axis and Auto-generated Coverage Axis...................57

Figure 17 – Example MAT Output Viewed in OpenDX Data Explorer...............61

Figure 18 – UML Diagram of the DCIL Command Classes65

Figure 19 – UML Diagram of DCIL Configuration Classes67

Figure 20 – UML Diagram of the DCIL Command Bridge Classes68

Figure 21 – UML Diagram of the DCIL Dataset Execution Unit and Related Classes

...70

 xii

Figure 22 – UML Diagram of the DCIL Timeset Execution Unit and Related Classes

...71

Figure 23 – UML Diagram of the MAT Data Model Classes73

Figure 24 – UML Diagram of the DCIL Output Interface Classes74

Figure 25 – UML Diagram of the MATServ Classes...77

Figure 26 – UML Diagram of the MATView Inbound Interface Classes80

Figure 27 – UML Diagram of the MATView Model Translation Classes81

 1

CHAPTER 1

Preface

ABSTRACT

System performance is important to accurately validate as early as possible in the

design process. Throughout the process of design refinement, engineers assemble

heterogeneous simulation environments that commingle sub-models at various levels of

abstraction, using assorted hardware description languages and system-level design

languages. Continuous performance validation can be possible in these environments

throughout the architectural exploration process, and subsequently during design

implementation. In order to free engineers to measure performance for any resource

within the heterogeneous system during simulation, it is necessary to capture data from

any point of abstraction within the model to a single database. Consequently, by

providing a graphical and configurable visualization interface into this database, the

architect can easily group data and quickly assemble key metrics that enable conclusions

to be made about system performance. This report is the culmination of a project

undertaken to develop a tool that implements the above proposal.

BACKGROUND

System models are progressing to yield heterogeneous simulation environments,

which enable them to become more broadly used throughout the design process.

Initially, an Electronic System Level language (ESL) may be employed to construct an

untimed or synchronous (cycle-accurate) model at a high level of abstraction early in the

design process to explore performance and validate hardware and software requirement

assumptions. As the design process progresses, parts of the same model may become

 2

more well-defined and more closely represent the actual hardware. Sub-models are

refined to more accurate models of computation, thus yielding a heterogeneous

simulation environment with Hardware Description Languages (HDL’s) engaged to

implement these new abstractions. Additionally, external design and/or verification

intellectual property (IP) may be integrated into the simulation environment as it becomes

more solidified and ready for functional verification, leading to additional overall

diversification. Orthogonal to this development process, variations of the same

environment can be used by system architects, designers, verification engineers, and

software application engineers – each with their own goals, and therefore preferred input

interface(s) and associated languages used to stimulate the model. A beneficial

characteristic of such a progressive unified environment is that the accuracy of initial

performance estimates will increase as the level of design abstraction lowers towards a

more accurate hardware implementation at the Register-Transfer Level (RTL), and

beyond to the gate-level. Therefore, a goal should be for engineers to monitor the system

and block-level performance metrics of the model as the level of abstraction proceeds

toward implementation, and ensure the predicted aspects of performance converge

towards the previously estimated goals.

However, this simulation environment is plagued by the same heterogeneity that

enabled it to be employed throughout the design process. In order to acquire

performance measurements during simulation, the architect needs to extract data from the

environment, conceivably from various points scattered about the model and stimuli,

each potentially modeled at different levels of abstraction. The method used for

collection of the data may be as simple as employing embedded textual display

statements that are post-processed by hand or script, though either method may prove to

be relatively inflexible, or a non-trivial endeavor. Other methods may involve using

 3

custom in-house developed tools, or vendor tools designed for this purpose; nonetheless,

either scenario requires that the tool support communication with the diversified

environment.

Once collected, the raw data alone may not yield meaningful information, unless

it is condensed and combined to create performance metrics. Performance metrics

summarize vast quantities of simulation data to accurately assert meaningful indices of

system performance. These metrics provide feedback in the design refinement process

for relative performance improvements when compared to previous designs, and an

understanding of where performance problems currently exist when the system

encounters specific preconditions.

One way to start assembling relevant performance metrics is to view the captured

data graphically, and visually associate related streams of data to initiate the analysis and

correlation of variables. Viewing one or more sets of captured data over time, or creating

scatter plots of two or more dependent axes can aid in analysis, and subsequently allow

the engineer to devise metrics that are useful for the particular analysis underway. The

visualization of data as multi-dimensional objects that can be freely manipulated in a

graphical interface is seen by the author as positively contributing to this analysis.

MOTIVATION

Current Electronic Design Automation (EDA) tools in the architectural

exploration and performance modeling arena are geared towards providing integrated

high-level design environments. In surveying the field, these tools are designed with the

architectural exploration, co-design, and rapid prototyping features tightly coupled to the

performance measurement aspects of the tool. Within that group of tools, a small number

are able to handle heterogeneous simulation environments with mixed languages and

levels of abstraction. Furthermore, the performance measurement capabilities are often

 4

coupled to the proprietary models provided by the EDA company, yielding standardized

and rigid measurement facilities available to the user. Thus, once the design

implementation has commenced, the performance measurement facilities within these

tools decrease in value, and it becomes difficult to assess and feedback the performance

of the RTL versus the original estimate gathered from the high-level model. In addition,

customers may have existing functional models in RTL, unique behavioral stimuli, and/or

entire in-house developed simulation environments already available, such as for

derivative products. In these scenarios, it is quite possible that leveraging a portion of

this intellectual property or environments for reuse in a new performance model is

desirable, and only the performance measurement features are required versus the

overhead of an entire architectural exploration suite.

The motivation of this project is to develop a tool that enables the engineer to

overcome the described obstacle with heterogeneous simulation environments by

providing various methods of data capture from anywhere within the model and stimuli

during simulation. With uniform support for different software, electronic system-level,

and hardware description languages that may be present, the architect can capture nearly

any type of data from any employed level of abstraction within the model, including

continuous-time, discrete-time, synchronous, and untimed models of computation.

Additionally, the tool framework provides a centralized online repository for deposition

of this data, and enables access to this data via a multi-dimensional, highly configurable

visualization interface for performance analyses. The engineer is then empowered to

explore the data and draw conclusions to feedback into the design process, from design-

space exploration through to RTL implementation.

 5

CHAPTER 2

Introduction

RESOURCES AND PERFORMANCE MEASUREMENT

In order to realize most any measurement of performance1, the evaluation must be

performed relative to a particular resource. In the context of this report, a resource is

simply defined as a specific item of observation within the model for which data is

captured during simulation, with the goal of assessing a type of performance. The item

may consist of a single gate, a logic block, a group of associated blocks, or even the

entire model. However, the precise definition of the resource should always be kept

mindful because it declares the portion of the model to which the derived performance

metrics pertain. Equally as important, it declares the set of external resources that the

performance metrics do not directly measure.

The instrumentation developed for this project was devised with resource

performance measurement in mind. In particular, the measurement facilities provide a

means for the user to ultimately derive weighted performance metrics. These are

essentially figures of merit describing overall system performance given a relative

weighting of the relevance and criticality of individual performance metrics. This is

accomplished by enabling the user to capture both raw resource performance data and

resource state data over time during the simulation, and subsequently combining them to

accurately describe how the resource performance modulates overall system performance

based upon the actual resource usage with a given system configuration and load.

1 The use of the term performance is purposefully ambiguous because most any specific
aspect of performance can be substituted by the reader in this context, such as timing or
power performance.

 6

Given this strategy, the three categories of measurement devised for this tool are

as follows:

 Resource Utilization – Measurements yielding the arbitrary state of a

resource during simulation.

 Resource Performance – Measurements yielding performance

information for a resource during simulation.

 Global Measurements – Measurements not relative to a particular

resource, but rather yielding information that pertains to the entire system

model, or simulation environment.

Per these definitions, any given weighted performance metric can be calculated as

the cross product of the observed resource utilization statistic and the desired resource

performance measurement over the course of the simulation. Whereas individual

resource performance measurements alone focus on the sole operation of the resource, a

weighted performance measurement is calculated as individual performance in terms of

its utilization within the system, and yields a system-relevant metric.

Resource Utilization

The goal of resource utilization measurements is to ascertain the states of a

resource, and time intervals thereof, continuously over the duration of the simulation.

The resource state is an arbitrary summarization of the condition of the resource for a

period of time. For instance, almost any given functional resource can be assigned a

resource state of either BUSY or IDLE, designating if the resource is active or not active,

respectively. Building upon that degenerate case, more complex and meaningful

resource states can be devised to amplify visibility of the resource activity during

simulation. An example can be found in Figure 1 below, where the state of a resource

bus_state is captured over time as the simulation progresses. As shown, three state

values are arbitrarily applied by the user (Idle, Arbitrate, and Transfer), presumably

signifying the temporal condition of the resource under observation.

Figure 1 – Example Depiction of a Resource State Measurement

Recalling the latter part of the above definition, any observed resource state has

an associated bounded duration of time. In a timed model, a bound may be any duration

between the entire length of the simulation, and the smallest time duration made available

by the event-based or cycle-based simulator. Even in an untimed model, a notion of time

can be applied to partition functional steps towards completion of an algorithm, and can

be weighted by the anticipated effort required to perform each step. Thus, every resource

state measurement contains an annotated time of transition to the state, and duration of

the state. Accumulation of these resource state statistics over the course of the simulation

yields the resource utilization, segregated into the total amount of time spent in each

state.

Resource Performance

The goal of a resource performance measurement is to obtain raw or calculated

numerical values, or record milestones observed in the model during simulation that

specify direct measures of instantaneous or cumulative performance. Various types of

measurements fall into the first category; for instance, general numerical value
 7

 8

measurements, quantifications of latency (delay), bandwidth or data-rate (data quantity

per unit time), activity factors (percent of resource in operation), and power consumption

(energy consumption per unit time.) Though most any value can be captured from the

model to designate some quantification of performance, it is important to remember the

measurement should not account for the state of the resource under observation; this is

the responsibility of the resource utilization measurement.

Another means of measuring resource performance is to assess performance as an

accumulation of functional milestones during simulation. The milestone, or resource

event, is posted at the point in time when the observation is made, and may be recurrent

as time progresses. The resource event carries an annotation of the time of occurrence,

and the cumulative count for that particular event from the beginning of simulation. This

allows visibility into the functionality of the resource for any arbitrary time interval

during simulation, and can be used to derive performance statistics. For example, a user

wishing to monitor cache subsystem performance may decide to post a resource event

when a data request results in a cache-miss. The user realizes that when the cache-miss

event is posted, it is an implication that overall performance may be degraded because the

cache could not immediately provide the requested data. By tracking the quantity and

proximity of occurrences of this event during the simulation, exploration can be done to

ascertain the cause of this performance-degrading behavior, and whether it occurs enough

to warrant some redesign.

A resource event only exists at a single point in time. However, it can be useful

to relate separate but logically connected resource events that together formulate a

meaningful span of time. The result is a resource event span, where resource events are

posted individually, and yet related to other resource events occurring at different times.

The relation of the resource events is arbitrarily defined by the user, and yields a dynamic

association of resource events regardless of the order they are posted in simulation.

Figure 2 – Example Depiction of a Resource Span Measurement

The relation of the grouped events in the span is accomplished by use of a

common span tag. As depicted in Figure 2, the four events posted are related by the tag

tag1. Although each posted resource event exists at a single point in time, the tag relates

the events such that the span exists over a duration of time. Each time an event is posted,

the tag is used to associate it with other events posted with the same tag, and

subsequently calculate the time delta since a previous event with the same tag (i.e. within

the span). By assigning a common thread of data to be a span tag, the span measurement

enables data traces through a resource, thus providing an understanding of temporal

performance along a prescribed data path.

Global Measurements

The goal of a global measurement is to yield information about the overall model

or the simulation environment, not pertaining to a particular resource in general. The

measurement can be a declaration of global state of the model or simulation, similar to

that of a resource state. One example is a global state that defines the condition of the

model as being in a reset phase, or in a normal operation phase. This state can be thought

 9

 10

to apply to the entire model, or across all functional resource boundaries in the model,

and therefore global to all resources as an indication of overall device state. Thus, this is

an appropriate use of a global state measurement. Similar to that of a resource state,

global states have an attributed time of transition to state, and duration of state.

Another global measurement is a global event, which is similar to a resource

event. An example use of a global event is to post an event when a new test case is

applied in the simulation. The event milestone can be used to logically partition

individual tests that are applied in the same simulation. Similar to that of a resource

event, global events have an attributed time of event posting, and cumulative count for

the particular event.

MODEL ANALYSIS TOOL OVERVIEW

The purpose of the Model Analysis Tool (hereafter abbreviated MAT) is to enable

dynamic extraction of data from a homogeneous or heterogeneous simulation

environment using the resource-centric philosophy described above, and deposit the data

into a centralized data store for access and manipulation via a graphical visualization

interface.

Key Features

 The MAT front-end Data Capture Interface Library commands have a

unified syntax and can be used in a variety languages (Verilog, C, C++,

SystemC) to capture data from continuous-time, discrete-time,

synchronous, and untimed models.

 Data capture commands can be scattered about the simulation

environment as virtual probes that send most any type of data to MAT as

the simulation executes.

 11

 Online storage of the captured data can reside on a separate workstation

from the system running the simulation, which decreases the simulator

memory overhead associated with using MAT to collect data during a

simulation.

 Visualization enables data viewing as multi-dimensional plots that can be

manipulated on-screen to best present metrics for performance analysis.

User Command Taxonomy

In accordance with the performance assessment categorization outlined in the

preceding discussion, the user instrumentation for the Model Analysis Tool follows the

same organizational structure, and supplements with additional control functionality as

summarized below.

Command Category Description
Time Management Enables creation of timesets, which are arbitrary

notions of regular or irregular time.
Data Management Enables creation of datasets – the top-level

organization for data, with optional association with
predefined timesets.

Resource Utilization Assessment Provides commands that enable resource
measurement in terms of temporal state.

Resource Performance Assessment Provides commands that enable resource
measurement in terms of temporal behavior or
function.

Global Measurement Provides commands that measure global aspects of
the model or the surrounding simulation
environment.

General Control Provides commands that manage aspects of MAT
functionality.

Table 1 – User Command Taxonomy

The subsequent chapter will more thoroughly describe the commands available to

the user within each of these categories in terms of syntax and usage.

 12

Visualization

The visualization of the acquired data is accomplished through an open-source

tool called OpenDX. This is a full-featured application that can be used as a stand-alone

visualization environment, or integrated with other applications via the OpenDX

Application Programming Interface (API). The current integration with MAT allows

OpenDX to run as a stand-alone tool, and import MAT-created data for subsequent

analyses. Future revisions are planned to fully integrate OpenDX with MAT to yield a

unified visual interface into the data storage, and to provide predefined visualizations that

can be applied by the user to the imported data.

 13

CHAPTER 3

The Model Analysis Tool

HIGH-LEVEL ARCHITECTURE

The Model Analysis Tool is comprised of three separate entities that work

together to provide a means of data capture from the model during simulation, maintain

online data storage, and enable graphical visualization, as depicted in Figure 3 below.

The first is the Data Capture Interface Library (DCIL), which is a shared library that is

linked in with the model and stimuli as the simulator executable is created. The DCIL is

primarily responsible for receiving data obtained from the simulation environment, and

subsequently translating this data into the internal MAT data model via creation of data

objects that are sent to an online storage server. Several versions of the DCIL are

provided, one for each software or hardware description language supported. In addition

to each shared library, a text header file is also supplied that provides the function

prototypes for each DCIL command. This header file is included during the model

compilation process, and is necessary for any source code files that make use of the MAT

user commands, which are essentially DCIL library calls.

Figure 3 – Example of the Distributed MAT Architecture

The next application provided is MATServ, which is a data server that receives the

MAT data objects from the DCIL, and stores them for subsequent access by the

visualization application. This server may be running on the same workstation as the

simulator executable, or may reside on a different workstation, as shown in Figure 3.

Communication between the DCIL and MATServ is accomplished via a TCP/IP network

socket connection [2]. Thus, the workstation executing the simulation model need not

suffer from a decrease in available memory due to the data storage required by MATServ.

In addition, future expansion of MATServ will feature lossy data compression such that

large quantities of related data in storage can be algorithmically compressed to decrease

the storage footprint in the workstation memory, and the size of the subsequent OpenDX

visualization data model. For example, simple data compression or aggregation

techniques can be employed, such as remapping the original data into moving averages to

reduce the data storage required.

 14

The final MAT application is MATView, which enables the data visualization.

When executed on the same or a separate workstation as MATServ, MATView

communicates with the data server via a TCP/IP socket connection to receive data objects

as they become available from the DCIL during simulation. MATView can be operated

asynchronously with respect to the simulation, and therefore can receive the latest data

 15

when subsequent requests are made to MATServ. MATView is responsible for acquiring

the MAT data objects from MATServ, and translating them into the separate data model

used by the OpenDX visualization tool. Currently, this OpenDX data model is exported

to a text file which can be imported by the OpenDX tool for visualization.

MAT DATA MODEL

MAT maintains an internal data model for organization of inbound data from the

simulation environment. Portions of the MAT data model are created explicitly via DCIL

commands, while other parts are created dynamically as data arrives. It is important to

understand the MAT data model structure before proceeding to an explanation of the

DCIL commands.

A Notion of Time

At the heart of the MAT data model is the concept of time. From the perspective

of the heterogeneous environment, the notion of time can have different meanings,

depending upon the model of computation utilized for a given resource. Discrete-time

model abstractions typically rely a base simulation clock, from which all signal

transitions, state changes, and model-generated events have an associated simulation

clock timestamp. Synchronous models of computation also rely on a simulation clock to

indicate when all evaluations are instantaneously performed in each clock cycle. In both

cases, the simulation clock is typically the highest frequency clock in the model.

Continuous-time models of computation execute with a notion of analog time versus the

discretized time that was managed with the previous models. This can be thought of as

non-integer time, where the analog precision of a model measurement is only limited by

the functional resources of the machine conducting the simulation. Finally, untimed

 16

models of computation are by definition without a concept of time; however, even here

time can be arbitrarily applied to denote successive points of algorithmic execution.

All inbound data to the DCIL have an associated simulation timestamp appended.

Ultimately, this enables the user to create the most basic two-dimensional plot of the data

values versus the simulation time when they were acquired. As multiple variables are

created during simulation, each with its own set of points consisting of data values and

timestamps, the dependent variables can be correlated with their common simulation time

to create multi-dimensional scatter plots.

Although simulation time is the most basic notion of time, timed models typically

function with clocks running slower than the simulation clock. For example, a discrete-

time or synchronous microprocessor model may have a clock domain for the internal

core, and another domain for the system bus clock, both of which are slower than the

simulation clock. These are examples of clocks that exhibit regularity, in that the steady-

state clock frequencies are constant. In contrast, recurring events of interest may also

exist in an timed or untimed model, such as bus transactions or keep-alive packets on a

network. These recurring events can be considered a type of clock, even if they exhibit

timing irregularity with respect to the frequency of occurrence. In either case, the user

may wish to timestamp inbound data values according to a regular or irregular user-

defined clock; MAT addresses this by providing timesets.

A timeset is an alternate notion of time, defined as monotonically increasing

integer points along an axis, relative to simulation time. A timeset can track a traditional

clock within the design that exhibits regularity as shown in Figure 4, or it can track

irregular events that occur over varying intervals as shown in Figure 5. The creation of a

timeset is performed via a call to the DCIL from within the simulation environment.

Similarly, the trigger to increment a particular timeset is performed via a call to the

DCIL. MAT keeps track of the timeset time as a function of simulation time, and can

apply the current timeset timestamp to any inbound data value received from the

simulation environment, in addition to the simulation time. Thus, ultimately the data

values can be plotted versus the simulation time, or the time of capture according to a

timeset time, the latter of which may be of more useful to the user for the particular

analysis being performed.

Figure 4 – Timeset Tracking of Regularity in the Model

Figure 5 – Timeset Tracking of Irregularity in Model

Note that with both simulation timestamps and timeset timestamps, it is possible

for multiple data values pertaining to the same variable to arrive in the same time instant,

 17

and therefore with the same timestamp. In this case, the last value received is the one

ultimately stored, overwriting all previous values captured.

Data Model Organization

The highest level of data categorization within the MAT data model is a dataset,

as depicted in Figure 6 below. A dataset is a collection of axes (variables) that can be

logically related over time, or to each other. The notion of a dataset is perhaps more

philosophical than concrete, as the user is left to decide which sets of data formulate a

reasonable grouping. However, it is suggested that a single dataset should be relevant to

a single resource within the model, and a single time domain, apart from simulation time.

Tim
es

et
Axis

(if
de

fin
ed

)

Figure 6 – Depiction of a Dataset

Datasets are created explicitly by the user via a DCIL command, and must be

created before any captured data can be sent to it. The dataset creation typically occurs

early in the simulation to define the dataset name, and whether there will be an

association with a predefined timeset. If the dataset is not associated with a timeset, all

 18

 19

inbound data values into the dataset will be appended with the current simulation time.

Otherwise, if the dataset is explicitly associated with a timeset, all inbound data values

into the dataset will be appended with the current simulation time and timeset time.

MAT supports creation of datasets with at most one associated timeset.

Underneath the MAT data model hierarchy of datasets exist axes, each of which is

likened to a one-dimensional array of data values that expands to store all data sent to it

from the DCIL. Upon creation, every dataset has one or two axes created automatically:

the simulation time axis, and the timeset time axis (if the dataset was associated with a

timeset at creation.) Unlike datasets, new axes are automatically created as they are

referenced by data capture calls to the DCIL from the simulation environment. That is,

the first time in simulation that data is captured by the DCIL for a yet unreferenced

dataset axis name, the axis is created by MAT and the data is stored. Subsequent

references to the same dataset and axis will continue to store the data as defined by the

particular DCIL command.

Conceptually, the MAT data model can support an unlimited number of datasets,

and an unlimited number of axes for each dataset. However, the number is practically

limited by the memory available to the MATServ data server. The intended application of

the MAT data model is for the user to create a dataset for each resource under

observation that does not require an associated timeset, or for each resource within a

specific time domain that requires a MAT timeset for advanced time tracking. Axes

within each dataset should be created and segregated based upon the type of information

being collected. An axis collecting state data for a resource utilization measurement

should exist only to collect that type of information. If deemed necessary, several aspects

of the resource’s state can be captured, each on its own axis. Additionally, other axes can

be created to capture the desired aspects of resource performance, such as a latency, or

 20

the observed quantity of data transmitted over time, and so on. By grouping these single

resource-related axes into a unique dataset, the resource performance and utilization data

can immediately be combined and presented graphically over independent time axes

(simulation time, and timeset time, if available). Additionally, the common simulation

time axis allows multi-variable correlation to be performed between dependent axes

within the dataset to determine how they track each other.

DATA CAPTURE INTERFACE LIBRARY

As previously described, the Data Capture Interface Library (DCIL) is the

interface between the simulation model and MAT, providing the commands by which

model data is captured and subsequently translated into the internal data model

representation as MAT data objects. The DCIL provides several categories of commands

to initialize portions of the MAT data model, and accomplish the specific type of data

capture.

All of the DCIL measurement commands which perform a data capture have at

least two arguments: the dataset name and axis name for which the data is destined. In

some versions of the DCIL (e.g. for C, C++), the simulation time argument is also

required. For many commands, this argument is needed because the supported language

or employed model of computation does not intrinsically have a notion of time, so this

must be supplied by the user. In other versions of the library (e.g. Verilog, SystemC), the

language does have intrinsic simulation time support which is automatically captured by

the DCIL command, and therefore it does not need to be explicitly specified in the

command arguments. By convention, if the simulation time is required, it is always the

last argument in the DCIL command.

Some data value measurement commands have another argument called a tag.

More generalized than the span tag mentioned in the previous chapter, a tag is a means

 21

by which the user associates previously captured data with newly captured data to

formulate the new data point. Tags are created dynamically as they are used, similar to

how axes are created on-the-fly. A tag is employed when the captured data may not

directly correspond to the data immediately stored. There are several measurement

commands that employ tags, such as mat_measure_delta(). As will be described later,

this command uses the current data value measured, and subtracts the previous data value

measured with the same tag name, and stores that new value as a MAT data object, or

data point. The initial case is when mat_measure_delta() is called with a new tag name

on a particular dataset and axis; in this scenario, no data object can be created because

there is not a previous value to subtract. Rather, the current data value is stored within

the DCIL, and awaits a subsequent mat_measure_delta() command call with the same

dataset, axis, and tag name. This will cause MAT to compute the difference and create

the first data point.

The sections below are categorized by function, and detail each of the DCIL

commands available for use in the model. In each section, the commands will be

designated as having an “HDL Syntax” (for Verilog and SystemC with an intrinsic notion

of time), and a “C Syntax” (for C and C++ which do not have an intrinsic notion of time.)

If one syntax is provided, it is applicable for all DCIL language implementations.

Note: The DCIL syntax for some commands allows for optional

arguments, and denotes them as surrounded by square brackets “[]”. The

DCIL as implemented for C++ and SystemC allows for any unused

optional argument for a command to be simply discarded from the list of

arguments. However, for the DCIL implemented in Verilog and C,

optional arguments are not allowed. Therefore, all arguments, including

 22

any denoted below as optional, must be included. In the case where an

optional argument would normally be discarded, the syntax should replace

the argument with zero (0), and the DCIL will handle the command as if

the argument was not present.

 23

Timeset Creation

The two commands in this category handle the creation of a timeset, and the

increment of a timeset time, which will be applied to all subsequent inbound data for

datasets that associate with the timeset.

Timeset Commands
Syntax: mat_timeset_define (<timeset>, <units>)

Parameters: timeset (string) Name of the timeset.
 units (string) Units of the timeset.

Description: Defines a timeset name and the associated units. This timeset name is

later referenced when updating a timeset time, or defining a dataset that
will be associated with the timeset.

Syntax: mat_timeset_update (<timeset>)

Parameters: timeset (string) Name of the timeset.

Description: Given a predefined timeset, this command monotonically increments

the current time value associated with this timeset.

Table 2 – Timeset Commands

Example Usage

Below is an example Verilog code snippet showing how MAT timesets are

created and updated.

 24

initial
begin
 $mat_timeset_define (“pci_clk”, “PCI Clocks”);
 $mat_timeset_define (“core_clk”, “Core Clocks”);
 $mat_timeset_define (“ddr_clk”, “DDR Clocks”
end
…
always @(posedge pci_clk)
 $mat_timeset_update (“pci_clk”);
…
always @(posedge core_clk)
 $mat_timeset_update (“core_clk”);
…
always @(ddr_clk)
 $mat_timeset_update (“ddr_clk”);

In this example, three timesets are created when the simulation begins.

Subsequently, Verilog always blocks are used to ensure each timeset is updated when the

positive edge of each respective clock is observed.

 25

Dataset Creation

This category is responsible for the creation of datasets.

Dataset Creation Command

The command below creates a dataset, with or without association with a

predefined timeset. Note that the timeset argument is optional; if not applied, the dataset

will not have a timeset association.

Syntax: mat_init_dataset (<dataset>, [<timeset>])

Parameters: dataset (string) Name of the dataset to be created.
 timeset (string) Name of timeset associated with this

dataset. If not specified, no timeset
association is performed.

Table 3 – Command Syntax of mat_init_dataset()

Example Usage

The below example Verilog code shows how datasets are created without timeset

association, and with timeset association.

initial
begin
 // Create dataset bus_arbiter without a timeset association.
 $mat_init_dataset (“bus_arbiter”);
 // Create dataset pci_perf with association with timeset pci_clk.
 $mat_init_dataset (“pci_perf”, “pci_clk”);
end

The above code demonstrates the creation of two datasets when the simulation

begins. The dataset bus_arbiter is created without timeset association, and the dataset

 26

pci_perf is created to have association with the pci_clk timeset, which is assumed to have

been previously defined via a mat_timeset_define() command call.

 27

Resource Utilization Assessment

This category handles the extraction of resource utilization data from the

simulation environment.

Resource State Measurement

This command captures the current state of a resource, and stores it on the

specified axis in a predefined dataset, along with the current simulation time and timeset

time (if associated with the dataset.)

HDL Syntax: mat_set_state (<dataset>, <axis>, <state>)
C Syntax: mat_set_state (<dataset>, <axis>, <state>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the state data

will be stored.
 state (string) Name of the state to apply to the axis.
 sim time (floating point) Simulation time of data capture.

Table 4 – Command Syntax of mat_set_state()

Example Usage

The below example Verilog code shows how the arbitrary state of a resource is set

as the state of the resource changes over time.

 28

always @(posedge clk)
begin
 case (current_state)
 `IDLE :
 begin
 $mat_set_state (“pci_perf”, “tx_state”, “Idle”);
 …
 end
 `REQUEST_BUS :
 begin
 $mat_set_state (“pci_perf”, “tx_state”, “Arbitrate”);
 …
 end
 `START_TRANSFER :
 begin
 $mat_set_state (“pci_perf”, “tx_state”, “Data Transfer”);
 …
 end
 …
 endcase
end

The above code fragment depicts a finite state machine implementation. Each of

the three states listed within the Verilog case structure set the state of the tx_state axis to

reflect the state of the current_state variable within the model. Because the state is

captured along with the simulation time (and timeset time, if applicable), the amount of

time spent in each state during simulation is automatically calculated.

 29

Resource Performance Assessment

The commands in this category relate to the extraction of resource performance

data from the model. There are a variety of commands provided to enable the data

extraction in a manner that is most intuitive for the user. These commands support the

capture of simple and composite numerical data, and user-defined event data. All data

points generated will have the simulation time appended, as well as the timeset time of

the dataset (if associated with the specified dataset.)

Simple Value Measurement

This is the most basic numerical measurement command, which receives a passed

in floating point value, and becomes the created data point in the MAT data model.

HDL Syntax: mat_measure (<dataset>, <axis>, <value>)
C Syntax: mat_measure (<dataset>, <axis>, <value>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the data will

be stored.
 value (floating point) Numerical value.
 sim time (floating point) Simulation time of data capture.

Table 5 – Command Syntax of mat_measure()

As shown in Figure 7 below, the floating point value passed in via

mat_measure() is directly translated into the data point created, without any calculation

or manipulation. Also note that the data point is formulated with the time that the capture

occurred, which always includes simulation time, and may include the additional timeset

time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, y2)

y1

y3

y2

(t3, y3)Data Point: (t1, y1)

mat_measure()

Figure 7 – Depiction of Simple Value Measurements

Example Usage

The below example Verilog code shows how direct value measurements are

made.

always @(posedge capture_clk)
begin
 …
 // Capture the current ADC output from the signal adc_out.
 $mat_measure (“adc”, “adc_output_value”, adc_out);
end

Incremental Value Measurement

This is a slightly advanced numerical measurement command. The floating point

value passed in is added to the value of the previous data point, and the sum becomes the

new data point. Thus, the value passed in creates an incrementally modified value with

respect to the previous data point.

 30

HDL Syntax: mat_measure_sum (<dataset>, <axis>, <value>)
C Syntax: mat_measure_sum (<dataset>, <axis>, <value>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the data will

be stored.
 value (floating point) Numerical value.
 sim time (floating point) Simulation time of data capture.

Table 6 – Command Syntax of mat_measure_sum()

As shown in Figure 8 below, the floating point value passed in via

mat_measure_sum() is translated into a data point via use of the previously captured

data point. Also note that the data point is formulated with the time that the capture

occurred, which always includes simulation time, and may include the additional timeset

time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, y2+y1)

y1

y3

y2

(t3, y3+y2)Data Point: (t1, y1)

mat_measure_sum()

Figure 8 – Depiction of Incremental Value Measurements

Example Usage

The below example Verilog code shows how accumulated value measurements

are made.

 31

 32

always @(posedge capture_clk)
begin
 …
 // Capture and accumulate the error signal output.
 $mat_measure_sum (“filter”, “feedback_err”, err_out);
end

The advantage to using mat_measure_sum() over mat_measure() in this case is

that the summation is maintained by the DCIL, and therefore an extra variable within the

model is not required to store the accumulated data. If mat_measure() was employed in

this scenario, the extra variable to maintain the accumulation would be required in the

model.

Tagged Delta Measurement

This is in the category of advanced numerical measurement commands. The

creation of a data point is dependent on whether a previous delta value measurement

command was performed with the same tag name on the dataset axis.

(a) If no previous delta value measurement was performed with the same tag

name, the passed in value is saved in the DCIL, and no data point is

generated.

(b) If a previous delta value measurement was performed with the same tag

name, that previous value is subtracted from the passed in value, and the

result becomes the new data point.

HDL Syntax: mat_measure_delta (<dataset>, <axis>, <tag>, <value>)
C Syntax: mat_measure_delta (<dataset>, <axis>, <tag>, <value>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the delta value

data will be stored.
 tag (string) Tag name used for association of data

on the axis.
 value (floating point) Numerical value.
 sim time (floating point) Simulation time of data capture.

Table 7 – Command Syntax of mat_measure_delta()

As shown in Figure 9 below, the floating point value passed in via

mat_measure_delta() is translated into a data point via use of the previously captured

data point with the same tag. Also note that the data point is formulated with the time

that the capture occurred, which always includes simulation time, and may include the

additional timeset time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, y2-y1)

y1

y3

y2

(t3, y3-y2)

tag = a

tag = a

tag = a

mat_measure_delta()

Data Point: <none>

Figure 9 – Depiction of Tagged Delta Measurements

Example Usage

The below example Verilog code shows how delta measurements are made.

 33

 34

always @(posedge capture_clk)
begin
 …
 // Measure the difference between each successive maximum s_out
 // value over time.
 if (peak)
 $mat_measure_delta (“adc”, “sine_out”, “delta_max”, s_out);
end

In the above example, the goal is to measure the difference between each

successive maximum value of a signal within the model. Since maximum values of s_out

are attained over time, mat_measure_delta() uses the tag delta_max to retain the

previous maximum value of s_out used in the current calculation. Thus, after the first

capture of the s_out value, each successive capture will use the previous value to

calculate the new data point in the sine_out axis. The peak model variable is assumed to

be true when the maximum value is driven on s_out, based on the design.

If mat_measure() was employed to implement this same measurement, an extra

variable within the model would be required to store the previous maximum value, and

the delta calculation would be performed explicitly before submitting the result as the

new data point.

Tagged Rate Measurement

This is in the category of advanced numerical measurement commands. The

creation of a data point is dependent upon whether a previous rate value measurement

command was performed with the same tag name on the dataset axis.

(a) If no previous rate value measurement was performed with the same tag

name, the passed in value is saved in the DCIL, and no data point is

generated.

 35

(b) If a previous rate value measurement was performed with the same tag

name, the passed in value is divided by the difference in time between the

current time, and the previous data point’s time. The result of that

calculation becomes the new data point.

HDL Syntax: mat_measure_rate (<dataset>, <axis>, <tag>, <value>)
C Syntax: mat_measure_rate (<dataset>, <axis>, <tag>, <value>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the rate data

will be stored.
 tag (string) Tag name used for association of data

on the axis.
 value (floating point) Numerical value.
 sim time (floating point) Simulation time of data capture.

Table 8 – Command Syntax of mat_measure_rate()

As shown in Figure 10 below, the floating point value passed in via

mat_measure_rate() is translated into a data point via use of the previously captured

data point with the same tag. Also note that the data point is formulated with the time

that the capture occurred, which always includes simulation time, and may include the

additional timeset time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, y2/t2-t1)

y1

y3

y2

(t3, y3/t3-t2)

tag = a

tag = a

tag = a

mat_measure_rate()

Data Point:

Figure 10 – Depiction of Tagged Rate Measurements

Example Usage

The below example Verilog code shows an example of rate value measurements

are utilized to capture bandwidth measurements during simulation.

 36

 37

always @(posedge pci_clk)
begin
 case (transaction_state)
 `START_TX :
 begin
 …
 // Clear the tag (tx_bw) for the trans_bw axis. This ensures
 // the first mat_measure_rate() call will establish a new set of
 // measurements.
 $mat_clear_tag (“pci_perf”, “trans_bw”, “tx_bw”);
 // Make the first measurement. Note that the very first axis
 // value measurement for a new tag is a dummy value, since it is
 // not used in the subsequent rate calculation. So, we use 0.
 $mat_measure_rate (“pci_perf”, “trans_bw”, “tx_bw”, 0);
 end
 …
 `END_TX :
 begin
 …
 // Measure how many bytes were transferred during this
 // transaction. byte_count is assumed to be a register holding
 // the number of bytes transferred. This is a measurement of
 // transaction bandwidth, or the amount of data
 // transferred over the duration of the transaction.
 $mat_measure_rate (“pci_perf”, “trans_bw”, “tx_bw”, byte_count);

 // Here, we’re measuring along a different axis, and the tag
 // (bw) is never cleared. Therefore, the delta in time is
 // from transaction end to transaction end.
 // So this a measurement for the bytes transferred over the time
 // elapsed since the last transaction, which is an overall bus
 // bandwidth measurement.
 $mat_measure_rate (“pci_perf”, “bus_bw”, “bw”, byte_count);
 …
 end
 …
 endcase
end

This example depicts how mat_measure_rate() can be used to measure

bandwidth (data rate). The axis trans_bw captures measurements that assess the

transaction bandwidth: amount of data transferred divided by the time spent in the

transaction. This is accomplished because the tag tx_bw on the trans_bw axis is cleared

every time the transaction begins (see description of mat_clear_tag() below).

Conversely, the axis bus_bw captures measurements that assess the overall bus

 38

bandwidth: amount of data transferred divided by the time since the last transaction

ended. This is accomplished because the tag bw on the bus_bw axis is never cleared, and

therefore the time delta measurement in the rate calculation includes any idle time on the

bus between transactions.

Tagged Derivative Measurement

This is in the category of advanced numerical measurement commands. The

creation of a data point is dependent upon whether a previous derivative value

measurement command was performed with the same tag name on the dataset axis.

(a) If no previous derivative value measurement was performed with the same

tag name, the passed in value is saved in the DCIL, and no data point is

generated.

(b) If a previous derivative value measurement was performed with the same

tag name, the previous data point’s value is subtracted from the passed in

value, and that quantity is divided by the difference in time between the

current time and the previous data point’s time. The result of that

calculation becomes the new data point.

HDL Syntax: mat_measure_deriv (<dataset>, <axis>, <tag>, <value>)
C Syntax: mat_measure_deriv (<dataset>, <axis>, <tag>, <value>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the derivative

data will be stored.
 tag (string) Tag name used for association of data

on the axis.
 value (floating point) Numerical value.
 sim time (floating point) Simulation time of data capture.

Table 9 – Command Syntax of mat_measure_deriv()

As shown in Figure 11 below, the floating point value passed in via

mat_measure_deriv() is translated into a data point via use of the previously captured

data point with the same tag. Also note that the data point is formulated with the time

that the capture occurred, which always includes simulation time, and may include the

additional timeset time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, y2-y1/t2-t1)

y1

y3

y2

(t3, y3-y2/t3-t2)

tag = a

tag = a

mat_measure_deriv()

Data Point:

tag = a

Figure 11 – Depiction of Tagged Derivative Measurements

Example Usage

The below example Verilog code shows how derivative value measurements are

made.

always @(posedge capture_clk)
begin
 …
 // Capture the current ADC output from the signal adc_out.
 $mat_measure_deriv (“adc”, “adc_output_deriv”, adc_out);
end

This example shows how the mat_measure_deriv() command can be used to

measure a discrete time derivative of the signal adc_out. As the adc_out value is

 39

 40

captured, the previous data point (including value and time of capture) is used to create

the new data point per for formula shown in Figure 11.

Tagged Time Measurement

This is in the category of advanced numerical measurement commands. The

creation of a data point is dependent upon whether a previous time value measurement

command was performed with the same tag name on the dataset axis.

(a) If no previous time value measurement was performed with the same tag

name, the current simulation time and timeset time (if applicable) is saved

in the DCIL, and no data point is generated.

(b) If a previous time value measurement was performed with the same tag

name, the previous data point’s time is subtracted from the current time.

The result of that calculation becomes the new data point.

HDL Syntax: mat_measure_time (<dataset>, <axis>, <tag>)
C Syntax: mat_measure_time (<dataset>, <axis>, <tag>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the time data

will be stored.
 tag (string) Tag name used for association of data

on the axis.
 sim time (floating point) Simulation time of data capture.

Table 10 – Command Syntax of mat_measure_time()

As shown in the above table or in Figure 12 below, no value is passed in for

mat_measure_time() because the current time (simulation and timeset time), and the

previously captured data point with the same tag are the only data required to create the

new data point. Note that the data point is formulated with the time that the capture

occurred, which always includes simulation time, and may include the additional timeset

time, if the dataset was created with timeset association.

Time t1 t2 t3

Axis

(t2, t2-t1) (t3, t3-t2)

tag = a

tag = a

mat_measure_time()

Data Point:

tag = a

Figure 12 – Depiction of Tagged Time Measurements

Example Usage

The below example Verilog code shows how time measurements are used to

assess latency.

 41

 42

always @(posedge pci_clk)
begin
 case (arbitration_state)
 `REQUEST :
 begin
 …
 // Clear the tag (lat) for the req2gnt_lat axis. This ensures
 // the first mat_measure_time() call will establish a new set of
 // measurements.
 $mat_clear_tag (“master_perf”, “req2gnt_lat”, “lat”);
 // Make the first measurement. Note that the first value
 // measurement for a new tag just establishes the tag and
 // first time point. No data point is created yet.
 $mat_measure_time (“master_perf”, “req2gnt_lat”, “lat”);
 end
 …
 `GRANT :
 begin
 …
 // Grant has been received. Measure time since request was
 // asserted. This will create a data point for the request
 // to grant latency on the req2gnt_lat axis.
 $mat_measure_time (“master_perf”, “req2gnt_lat”, “lat”);
 …
 end
 …
 endcase
end

The above example shows how mat_measure_time() is used to capture the

latency from a request to a subsequent grant. First, mat_clear_tag() is called to reset any

internal DCIL state of the lat tag. Then, the call to mat_measure_time() establishes the

time when the request is asserted. The second call to mat_measure_time() occurs when

the grant is received, and calculates the difference in time from the original request

(specified by referring to the lat tag) and the current time. This yields the request-to-

grant latency, which becomes a data point.

Resource Event Measurement

Separate from the above numerical measurements, resource event measurements

record observations during simulation. Each event data point records the name of the

event, the time of observation (both in simulation time, and timeset time if applicable),

and the cumulative number of observations of the event name.

HDL Syntax: mat_event (<dataset>, <axis>, <event>)
C Syntax: mat_event (<dataset>, <axis>, <event>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the event data

will be stored.
 event (string) Name of the event generated at the

current simulation time and timeset
time for the referenced axis.

 sim time (floating point) Simulation time of data capture.

Table 11 – Command Syntax of mat_event()

As shown in Figure 13 below, mat_event() has been called four times during a

simulation, which translated into four separate data points. Note that the event eventA

was captured twice, and therefore the count for the latter capture at time t4 was

automatically incremented to 2 by the DCIL upon capture.

Figure 13 – Depiction of Resource Event Measurements

 43

 44

Example Usage

The below example Verilog code shows how events are posted to track

functionality of the model.

always @(posedge core_clk)
begin
 …
 if (instr_cache_miss)
 begin
 // Instruction cache miss occurred.
 $mat_event (“icache_perf”, “icache_miss”, “I-MISS”);
 end
end

As shown in the simple example above, a resource event is posted when

instr_cache_miss is true, presumably when the instruction cache of a processor has

encountered a miss. Thus, the I-MISS resource event is posted every time an instruction

cache miss occurs, and this data point includes the cumulative number of times the event

is posted. This can enable the engineer to eventually assess when the event arises relative

to other conditions during simulation, and track the number of times an instruction miss

has occurred.

Resource Span Event Measurement

As an extension to the resource events described above, resource span events are

dynamically grouped according to association with a tag. Each span event data point

records the name of the event, the time of observation (both in simulation time, and

timeset time if applicable), and the time since the previous span even was posted with the

same tag.

 45

HDL Syntax: mat_span_event (<dataset>, <axis>, <tag>, <event>)
C Syntax: mat_span_event (<dataset>, <axis>, <tag>, <event>, <sim time>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the span event

data will be stored.
 span tag (string) Tag name used for association of span

events on the axis.
 event (string) Name of the span event generated at

the current simulation time and timeset
time for the referenced axis.

 sim time (floating point) Simulation time of data capture.

HDL Syntax: mat_span_end (<dataset>, <axis>, <tag>, [<event>])
C Syntax: mat_span_end (<dataset>, <axis>, <tag>, [<event>, <sim time>])

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where the span event

data will be stored.
 span tag (string) Tag name reference to the span that

will be ended.
 final event (string) If specified, this is the name of the

final span event to be generated before
ending the span.

 sim time (floating point) Simulation time of data capture.

Table 12 – Span Event Commands

The command mat_span_event() posts a span event on the designated dataset

and axis at the current simulation time, and timeset time (if associated with the dataset.)

The posted event is associated with other events in the span via the specified tag.

The command mat_span_end() ends a span on the designated dataset and axis,

and optionally can post a span event at the current simulation time and timeset time just

prior to ending the span.

As shown in Figure 14 below, four span events were posted on the trace axis,

each within the same span via use of the span tag tag1. Note that the last event eventD

may have been posted by calling mat_span_event() followed by mat_span_end()

without the optional final event, or posted via calling mat_span_end() alone with the

optional final event specified. As each event data point is created, the time delta between

the current time and previous event’s time is calculated, and becomes part of the stored

data point.

Time

eventA

eventB eventC

eventD

trace

tag1

(t1, “eventA”, 0)Data Point: (t2, “eventB”,
t2-t1)

(t3, “eventC”,
t3-t2)

(t4, “eventD”,
t4-t3)

Figure 14 – Depiction of Resource Span Event Measurements

Example Usage

To illustrate how mat_span_event() and mat_span_end() enable data traces, we

need to construct a small system where data flows between four functional units within a

model.

 46

Block A Block B

Block CBlock D

data0

data1

data2

Figure 15 – Example of Data Flow Between Four Functional Units

As shown in Figure 15, four functional blocks exist named A, B, C, and D, and

the data path we wish to trace originates in A, flows to B, C, and finally to D. Although

there is a single data path that links the four blocks, individual datum can be pipelined

such that new datum can enter the data path before previous datum terminates at block D.

The circles in the diagram indicate observation points with which the data is traced with

MAT. Thus, the trace begins in block A when the datum is created, and then an

observation point exists as the datum arrives to block B, and similarly to block C and

block D, and finally when the datum is terminated within block D.

To apply the resource span event commands to this scenario, each observation

point will yield a mat_span_event() command within the block that specifies the dataset

and axis to be used for containing the track information. In addition, each command will

specify a tag, which is the internal signal or variable that contains the data. Recall that

the tag is the argument that associates events into a span. Thus, the piece of datum traced

through each block becomes the tag that assembles the event span. The final point at

 47

 48

which the data trace is terminated within block D will yield a mat_span_end()

command, which ends the span. Note that this trace example depends upon the data

currently flowing in the data path to be unique. Otherwise, two spans that are destined to

be distinct and disjoint may become integrated into a single long span, which is not the

intention.

The below Verilog code, though incomplete, illustrates the usage of the

mat_span_event() and mat_span_end() commands to accomplish the described data

trace for this system.

module blockA (d_out)
output [32:0] d_out;

always @(posedge clkA)
 if (create_data)
 begin
 …
 $mat_clear_tag (“blocks”, “abcd_trace”, d_out);
 $mat_span_event(“blocks”, “abcd_trace”, d_out, “CREATED_A”);
 end

endmodule

module blockB (d_in, d_out)
input [32:0] d_in;
output [32:0] d_out;

always @(posedge clkB)
 if (new_data)
 begin
 …
 $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_B”);
 end

endmodule

 49

module blockC (d_in, d_out)
input [32:0] d_in;
output [32:0] d_out;

always @(posedge clkC)
 if (new_data)
 begin
 …
 $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_C”);
 end

endmodule

module blockD (d_in)
input [32:0] d_in;

always @(posedge clkC)
 if (new_data)
 begin
 …
 $mat_span_event(“blocks”, “abcd_trace”, d_in, “ARRIVE_D”);
 end
 …
 if (data_terminate)
 begin
 …
 $mat_span_end(“blocks”, “abcd_trace”, d_in, “TERM_D”);
 end

endmodule

Global Measurement Commands

In contrast to the prior described commands that pertain to a particular resource,

commands in this category capture data related to the overall model or simulation

environment. Note that the commands below do not contain a dataset parameter, as all

global measurements belong to an internal MAT global dataset. All axes specified in the

global commands implicitly belong to this global dataset.

 50

Global State Measurement

This command captures the current state of the model or simulation, and stores it

on the specified axis in the global dataset, along with the current simulation time and

timeset time (if associated with the dataset.)

HDL Syntax: mat_global_state (<axis>, <state>)
C Syntax: mat_global_state (<axis>, <state>, <sim time>)

Parameters: axis (string) Name of the axis where the global

state data will be stored.
 state (string) Name of the state to apply to the axis.
 sim time (floating point) Simulation time of data capture.

Table 13 – Command Syntax of mat_global_state()

Example Usage

The below example Verilog code shows how the arbitrary global state

measurement command is used to describe the state of the model.

always @(posedge clk)
begin
 if (hreset)
 $mat_global_state (“hardware_reset”, “In Reset”);
 else
 $mat_global_state (“hardware_reset”, “Normal Operation”);
end

The above code shows that an axis hardware_reset is used to describe the state of

the system being modeling. When the model signal hreset is asserted, hardware_reset

changes to the In Reset state. When hreset is negated, the hardware_reset axis switches

to the Normal Operation state. Because the hreset signal presumably changes during

simulation to indicate that the system is either being reset or not being reset, the use of a

global state to track this activity is intuitive and natural.

 51

Global Event Measurement

Global event measurements record observations during simulation that pertain to

the model or simulation environment. Each global event data point records the name of

the event, the time of observation, and the cumulative number of observations of the

global event name.

HDL Syntax: mat_global_event (<axis>, <event>)
C Syntax: mat_global_event (<axis>, <event>, <sim time>)

Parameters: axis (string) Name of the axis where the global

event data will be stored.
 event (string) Name of the event to be posted on the

axis.
 sim time (floating point) Simulation time of data capture.

Table 14 – Command Syntax of mat_global_event()

Example Usage

The below example Verilog code shows how the arbitrary global event

measurement command is used to denote temporal partitions during simulation.

initial
begin
 $mat_global_event (“tests”, “Test #1”);
 do_test_1();
 $mat_global_event (“tests”, “Test #2”);
 do_test_2();
 $mat_global_event (“tests”, “Test #3”);
 do_test_3();
 …
end

The above code shows that an axis tests is used to denote when test cases are

applied to the model. Presumably, each test is executed by the Verilog task do_test_1(),

do_test_2(), and do_test_3(), and each test is preceded by a global event designating the

 52

test to subsequently run. Because each event records the time it was posted, the user

knows when each test case began during the simulation.

General MAT Commands

The commands in this category pertain to management of tags, axes, and datasets

throughout the simulation.

Syntax: mat_clear_tag (<dataset>, <axis>, <tag>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis with the tag to be

cleared.
 tag (string) Name of the tag to be cleared.

Syntax: mat_clear_axis (<dataset>, <axis>)

Parameters: dataset (string) Name of the dataset.
 axis (string) Name of the axis where all tags will be

cleared.

Syntax: mat_reset ()

Parameters: <none>

Table 15 – General MAT Commands

The command mat_clear_tag() allows the user to clear a tag on a specific axis,

such that the next time the tag is referenced by a DCIL command, it will be as if the tag

was referenced for very first time. Similarly, the command mat_clear_axis() behaves

exactly like mat_clear_tag() for all tags ever referenced on the axis.

When the command mat_reset() is called, all axes within all datasets are have

their tags cleared. This is an effective reset of the DCIL state information.

 53

 TOOL CONFIGURATION

The Model Analysis Tool supports configurability via use of ASCII-text readable

configuration files. MAT supports two types of configuration files, and both are

formatted in XML (eXtensible Markup Language), and parsed by the DCIL when a

simulation begins. These files allow the user to modify the behavior of MAT before

simulation, rather than apply configurations via user commands that would require a

recompilation of the simulation environment.

Global Configuration File

The MAT global configuration file is used to apply user selections for the DCIL

to output data to the screen and/or MATServ, and to specify the alternate configuration

file for dataset management. When the DCIL library is first loaded during simulation, it

searches for the global configuration file named MAT_config.xml. An example of this

global configuration file is found below.

<?xml version="1.0" encoding="iso-8859-1" ?>
<mat_config ver="1.0">
 <output_drivers flush_interval="5000">
 <text enable="1"/>
 <visual enable="1" ip="192.168.1.2" port="40001"/>
 </output_drivers>
 <dataset_config filename="dataset_config.xml"/>
</mat_config>

Table 16 – Example Global Configuration File

As shown, there are essentially two major sections of MAT configuration. The

first section encompasses the output_drivers block, which designates the available output

drivers in the DCIL. The output_drivers block contains a configuration for the

flush_interval. The value assigned to this modifier determines how many MAT data

objects will be queued within the DCIL before they are flushed to all the enabled output

 54

drivers. In the above example, five-thousand data objects will be enqueued before they

are all flushed to the enabled output drivers. Because TCP/IP communication with

MATServ takes time, sending each data object as it is created will immensely slow down

the simulation. However, storing all data objects during simulation may require a large

amount of system memory. Thus, this number should be set to an appropriate value such

that the simulation is not grossly affected by data object flushes to MATServ, and yet the

memory required to store the data objects on the simulating workstation is not

proportionally large.

Within the output_drivers block, each output driver is configured for enablement.

Currently, MAT supports the text output driver that displays captured data to the screen,

and the visual output driver which routes data to MATServ for eventual visualization by

MATView. Each output driver can be enabled by setting the enable modifier to ‘1’, or

disabled by setting the enable modifier to ‘0’. The visual output driver contains two extra

configurations. The ip field designates the TCP/IP address of the workstation where the

MATServ server is running, and the port field designates the TCP/IP port number that

MATServ is setup to listen.

The second configuration supported by the MAT global configuration file is the

location of the MAT dataset configuration file. As shown in Table 16, the dataset_config

field contains a modifier filename that should point to the path and filename of the dataset

configuration file. If this item is not specified, no further configuration parsing will be

performed by the DCIL.

Dataset Configuration File

The MAT dataset configuration file is used to fine tune which datasets or axes

within datasets will be enabled for text display or visualization. In addition, the auto-

generation of event axes is enabled via this file. This file is read by the DCIL after

 55

parsing of the global configuration file, which specifies the path and filename of the

dataset configuration file. An example of a dataset configuration file is shown in Table

17 below.

<?xml version="1.0" encoding="iso-8859-1" ?>
<dataset_config>
 <dataset name="dataset1" text="1" visual="1"/>
 <dataset name="dataset2" text="0" visual="0"/>
 <dataset name="dataset2" axis="state1" visual="1"
 coverage_axis="cs1" coverage_count="3" />
 <dataset name="dataset2" axis="state2" visual="1"
 coverage_axis="cs2" coverage_count="4" />
 <dataset name="dataset3" axis="arb_grant" text="1" visual="1"
 coverage_axis="cvg_grant" coverage_count="3" />
</dataset_config>

Table 17 – Example Dataset Configuration File

As shown, only one type of configuration block exists, namely the dataset

configuration line. Each line targets specific configuration modifiers for a particular

dataset or axis within a dataset. If only the dataset is specified, all subsequent

configurations on the line will apply to the entire dataset. In contrast, if a dataset and an

axis is specified, all subsequent configurations on the line will apply only to the axis in

the dataset. In addition, since this dataset configuration file is parsed from top to bottom,

any configurations that refer to the same dataset and/or axis as previously configured

above will override the above setting. For example, dataset2 is first configured with both

the text and visual output drivers disabled. Because no axis is specified, this

configuration applies to all axes created within dataset2. However, subsequent

configuration lines enable the visual output driver for axes axis1 and axis2, so these axis

settings override the previous disablement of all output drivers for dataset2.

For most dataset configuration lines, two configuration modifiers are available to

set the enablement of the output drivers on a dataset basis, or dataset and axis basis. The

 56

text modifier is set to ‘1’ for to enable screen display of information pertaining to the

specified dataset, or dataset axis. Likewise, the visual modifier is set to ‘1’ to enable data

object transmission to MATServ for the specified dataset, or dataset axis. If either

modifier is set to ‘0’, the corresponding output driver is disabled. If the MAT global

configuration file disables an output driver, any enablement settings for that output driver

in the dataset configuration file are ignored.

Automatic State Coverage Axis Generation

For axes that will contain resource state data points, which are generated by the

mat_set_state() command, additional configuration modifiers are available in the dataset

configuration file. The coverage_axis and coverage_count modifiers of a dataset

configuration line are used in conjunction to enable the auto-creation of an axis, and

generation of resource events on that axis based on changes on the state axis. The

coverage_axis modifier specifies the name of the event axis to be automatically created,

and used for the DCIL-generated events. Additionally, the coverage_count modifier

specifies the number of states on the state axis (including the current state) to be used for

formulate the event posted on the coverage_axis. The benefit of this built-in feature is

that events can automatically published that show the state transition coverage of a

resource. This can aid in the analysis of resource state transitions, versus the more basic

analysis of tracking individual states.

m
5m

1m
0

m
0m

5m
2

m
2m

3m
5

m
0

m
5

m
2

m
3

m
5

m
1

m
5m

2m
3

m
3m

5m
1

m
0

Figure 16 – Example State Axis and Auto-generated Coverage Axis

Referring to the last configuration line for dataset3 in Table 17, and example

depicting this functionality is shown in Figure 16 above. The state axis arb_grant

consists of state data points captured during a simulation via use of the mat_set_state()

command. Because the dataset configuration file stipulates that a separate coverage axis

is to be maintained for this state axis, the cvg_grant axis will be created by the DCIL.

Additionally, the configuration specifies that the three most recent states will be

concatenated to become the posted event on the cvg_grant axis. Thus, when the third

state transition is encountered on the arb_grant axis, the DCIL automatically

concatenates the current and previous two states to formulate an event string, which is

posted on the cvg_grant axis. This action occurs for every subsequent state change on

the arb_grant state axis until the simulation completes.

 57

 58

MATSERV DATA SERVER

MATServ provides online storage for data objects generated during simulation by

the DCIL. The MATServ data server is an executable application that may reside on the

same workstation as the executing simulation, or on a different workstation.

When the simulation is initiated, the DCIL attempts to establish a connection with

the MATServ server at the TCP/IP address and port number designated in the MAT global

configuration file. If the connection cannot be established, the DCIL will wait until the

connection is made. When the network connection is made, the DCIL allows simulation

to proceed, and MATServ will begin to receive captured data objects over this connection.

To start the MATServ server, the executable binary needs to be called with

command-line parameters to define the TCP/IP port numbers to listen for connection

requests from both the DCIL and MATView. An example command-line execution of

MATServ is found below:

matserv –portin 40000 –portout 40001

The command-line switch -portin denotes the TCP/IP port number that will be

monitored for incoming connections from the DCIL. Similarly, the -portout switch

denotes the port number monitored for connections from MATView. The port numbers

must not be the same.

When executed, the server runs in the foreground and waits for connection

requests from either the DCIL or MATView. Information is displayed on the screen when

connections are established or dropped. The server can be exited by hitting Control-C,

which will delete all stored data objects on the server.

 59

MATVIEW VISUALIZATION CLIENT

The MATView visualization client is the interface between the MATServ and

visualization of the data captured during simulation. MATView downloads data objects

stored by MATServ, and translates them into the OpenDX data model which is exported

to a file for use in the OpenDX Data Explorer [3] visualization application. MATView is

executed via the following syntax:

matview –server 192.168.1.1:40001

When the MATView application executes, it first attempts to connect with the

MATServ data server using the command-line specified TCP/IP address and port number

to which the server is listening. MATView will wait until the connection is established,

and then start communication by requesting a list of datasets for which data objects

currently reside on MATServ. This allows MATView to determine which datasets have

data objects currently available for download. MATServ also provides the current

number of data objects available for each dataset. MATView uses this information to

determine how many new data objects are available since the last communication with

MATServ. If new objects are available, they are downloaded by MATView via the

network connection, and recreated into memory-allocated MAT data objects.

Subsequently, the objects are translated into the OpenDX data model. Once all data

objects are received from MATServ, the OpenDX data model is exported to a text data

file. This file is read by the OpenDX Data Explorer application to load all the data points

created during simulation and allow manipulation and visualization via the Data Explorer

tool.

 60

Visualization Using OpenDX Data Explorer

After MATView has written the OpenDX data model into a text file, it can then be

opened via the OpenDX Data Explorer application. Data Explorer is a front-end

graphical user interface (GUI) responsible for data import, manipulation of the data

model, and highly-configurable visualization via a data-driven graphical programming

language. Since MATView exports a file containing a flattened OpenDX data model

representation of the captured data points from simulation, Data Explorer only needs to

import this file, and all datasets and axes become available by the original names used

when created in MAT.

An in-depth description of the open-source Data Explorer application is beyond

the scope of this document. Although the Data Explorer application is employed in this

current release of MAT to ultimately handle the visualization of the collected data, future

releases will encapsulate the visualization in a MATView GUI, and enable a more unified

and user-friendly interface for manipulating and displaying the captured simulation data.

As an example of the type of visualizations available, Figure 17 below shows an actual

plot created in Data Explorer with data captured by MAT.

Figure 17 – Example MAT Output Viewed in OpenDX Data Explorer

The data rendered in the above visualization was gathered during a SystemC

simulation where the number of bus transactions for a particular system interface was

monitored over simulation time. The figure shows two variations of representing the

same data, one overlaid upon the other. The line representation on top displays a

standard two-dimensional graph of the data, plotted as bus transactions per unit time.

Below the graph is an alternate colored glyph representation, where each data point in

time is depicted as a sphere. As the value of each data point changes over time, the size

of sphere changes proportionally, and the color shifts in spectrum to aid the visualization.

Thus, as the values increase on the y-axis in the top graph, the spheres become larger, and

shift from blue to green, yellow, orange, and red. The advantage of the colored glyph

representation is that the sphere sizes and colors are normalized to the data, such that

maximum value data points will colored in red, and minimum data points will be colored

 61

 62

in blue. If multiple plots are observed together, the engineer can easily find low and high

values measured over time by simply observing the glyph color.

 63

CHAPTER 4

Model Analysis Tool Implementation

OVERVIEW

The Model Analysis Tool software is comprised of three separate entities that

each work together to enable data capture from the simulation environment, store and

maintain the MAT data model representation on a network server, and visualize the

captured data. Respectively, these entities are named the Data Capture Interface Library

(DCIL), MATServ, and MATView. Each library or application is written in C++ using an

object-oriented design methodology to maximize reuse and enable future expansion by

clear partitioning of class roles and responsibilities. This chapter is dedicated to an

explanation of the MAT implementation for each one of the entities that make up the

Model Analysis Tool.

DATA CAPTURE INTERFACE LIBRARY

The DCIL is the interface between the simulation and MATServ, providing the

user with all the commands delineated in the previous chapter. The construction of this

interface library began with a logical partitioning of functionality, which translated into

an object-oriented class organization. The functional responsibilities of the DCIL are

listed in Table 18 below, alongside the abbreviated name used thereafter to reference

each functional responsibility.

 64

Functional Responsibility Abbreviated Name
1. Provide the command interface to the user. Command Interface
2. Provide a means of run-time configuration. Configuration Interface
3. Provide means of routing user commands to the

appropriate internal execution unit.
Command Bridge

4. Provide individual execution units to handle user
commands.

Execution Units

5. Provide means of conversion of the captured raw data
from the simulation environment into the internal
MAT data model.

Data Model

6. Provide a standardized and extensible mechanism by
which MAT data model objects flow out of the DCIL.

Output Interface

Table 18 – DCIL Functional Responsibilities

Command Interface

The DCIL Command Interface is comprised of command classes, and several

interfaces that provide the commands to the user in the form of global function calls.

Each interface is targeted for a different version of the library, depending upon the

language for which the DCIL will be compiled (Verilog, C, C++, SystemC).

Each interface consists of the global functions that are called by the user,

comprising the user commands available to the simulation environment. Every function

creates an object of a command class, or a command object, which encapsulates the

respective user command and associated arguments passed in via the function call. Then,

the command object is submitted internally to the Command Bridge for routing and

execution.

Figure 18 – UML Diagram of the DCIL Command Classes

As shown in preceding figure, all command classes derive from

MAT_cmd_base, which is a virtual base class that provides all derived classes with a

command identifier, and the target for the command. At a minimum, all command

objects must set these two fields within the base class. The target defines the destination

Execution Unit for the command within the DCIL; this will be detailed in the Command

Bridge section below. The command identifier defines the specific command that will be

executed once the command object reaches its destination. Thus, each command class

acts as a template for groups of commands pertaining to a certain functional category that

share common data fields. These data fields are used to pass information to the targeted

Execution Unit within the DCIL.

There are three derived command classes that extend MAT_cmd_base to provide

additional data fields used for supplying relevant information for each command.

Command objects created from the MAT_cmd_timeset class are used by the timeset

creation commands listed in Table 2. Command objects created from the

 65

 66

MAT_cmd_dataset class are used by the dataset creation and all measurement

commands listed in Table 3 through Table 15. The class MAT_cmd_config is used to

create command objects that modify the configuration of MAT on-the-fly. These

commands are not accessed externally via function calls, but rather internally by the

Configuration Interface and other units to set and read configuration data.

Configuration Interface

Besides the Command Interface, the Configuration Interface is the only other

method by which information enters the DCIL. This interface is activated when DCIL is

first loaded, which causes the various XML configuration files to be parsed. The

parameters within these configuration files direct certain dynamic behaviors of the DCIL

during simulation, as described in the previous chapter.

Figure 19 – UML Diagram of DCIL Configuration Classes

As shown in Figure 19 above, there are several hierarchies of classes that

implement the configuration functionality. MAT_config_base is a virtual base class that

has the MAT_config_default and MAT_config_dataset classes derived from it.

Respectively, these derived classes perform the actual parsing of the main MAT

configuration file, and the dataset configuration file via use of the MAT_XML_reader

helper class. The MAT_config_base class maintains a class instance registry of objects

that are derived from it, which is used when parameter parsing is initiated.

After the configuration Execution Unit class MAT_config_if is instantiated at

start-up by the MAT_top top-level class, the init_parms() method of MAT_config_if is

called, which cycles through all registered objects of MAT_config_base, calling the

handle_options() method on each derived class. This method initiates the XML parsing

 67

of all configuration files detected, and subsequent insertion of the parameters as name-

value pairs into a data structure in MAT_config_if. Later, when a parameter is

referenced by a command object being executed by MAT_config_if, these same data

structures are referenced to find and return the parameter value.

Command Bridge

The previously described Command Interface creates command objects that

encapsulate the user command and associated parameters. After each command object is

created, it is submitted to the Command Bridge to be routed for execution. The

Command Bridge receives the command objects, and based upon their target identifier set

by the Command Interface, the object is routed to the appropriate Execution Unit that will

handle it.

Figure 20 – UML Diagram of the DCIL Command Bridge Classes

As shown in Figure 20 above, the MAT_interface_base is a virtual base class

that currently has three classes deriving from it: MAT_config_if, MAT_dataset_if, and

 68

 69

MAT_time_if. When each derived class is instantiated, it calls the submit_name()

method of the MAT_interface_base class to register its unique identifier and a reference

to itself. Later, when the Command Interface creates a command object as a result of a

user command call, the object is sent to the Command Bridge via a call to the static

method start_cmd() in the MAT_interface_base. This method determines where to

route the command object based upon its target identifier, which corresponds to the

unique identifier specified by the derived Execution Unit classes during registration. If

the identifier exists in the registry, the command object is sent to the Execution Unit via

the virtual submit_cmd() method. If the identifier does not exist in the registry, the

command is finished, and an error code is returned to the Command Interface designating

the command did not complete successfully.

Execution Units

The Command Bridge routes all inbound command objects to the appropriate

Execution Unit for handling of each command. The Execution Units are derived classes

from the MAT_interface_base virtual base class, as shown in Figure 20. Each of these

units have various interactions with other objects, so a discussion of each Execution Unit

is warranted.

The MAT_dataset_if class is the unit responsible for handling all dataset creation

and measurement commands objects. The classes utilized during the execution of these

commands are shown in Figure 21.

Figure 21 – UML Diagram of the DCIL Dataset Execution Unit and Related Classes

As shown in the preceding figure, the MAT_dataset_if class has association with

a number of other classes in order to execute received dataset command objects.

Command objects of the class MAT_cmd_dataset are received via the submit_cmd()

method in MAT_dataset_if, which are subsequently parsed to determine the specific

command sent in the command object. If the command object calls for the creation of a

data point, the fields of the object are parsed, and the appropriate Data Model object is

created and filled with the required data to describe the data point. The

MAT_cmd_config class is used during some command executions to retrieve

configuration parameters from the Configuration Interface. MAT_dataset_track is a

 70

data management class that enables storage of temporary Data Model objects for

measurement commands that require use of previously created data objects. In addition,

this class tracks datasets and their timeset association, as well as axes and the type of data

associated with them. Finally, the MAT_output_base class is used via a static method

call to submit_data() to send formulated Data Model objects to the Output Interface.

The MAT_config_if instance mentioned earlier in the Configuration Interface

section is an Execution Unit, which manages the parsing of configuration files at DCIL

load time, and responds to command objects during simulation that request parameter

values. As MAT_cmd_config command objects are received, they are parsed by the

MAT_config_if class to determine which specific configuration command is to be

executed, and the internal configuration parameter data structures are queried to return

requested parameter values (via the same command object) to the caller.

Finally, the MAT_time_if class is responsible for handling all

MAT_cmd_timeset commands objects, and maintaining all timeset state information.

Figure 22 – UML Diagram of the DCIL Timeset Execution Unit and Related Classes

 71

 72

The MAT_time_if class instance receives MAT_cmd_timeset command objects

from the Command Bridge, and subsequently parses the object to determine the specific

type of command to be executed. This Execution Unit maintains a data structure that

tracks the timeset name and the current state of that timeset via use of the MAT_timeset

class. Every timeset is associated with its own MAT_timeset object, and the respective

timeset time can be queried and updated (incremented) via method calls to this object.

Note that when a dataset is created with timeset association, a pointer to the respective

MAT_timeset object is obtained and used for acquiring the current timeset time directly

without needing to perform the timeset name look-up via this interface.

This employed methodology of using command objects generated by a Command

Interface, and a Command Bridge for routing commands to specialized Execution Units

has the advantage of logically separating the command caller from the command handler.

As new commands are added to the DCIL, additional command object classes can be

derived from MAT_cmd_base, and new Execution Unit classes can be derived from

MAT_interface_base. With the target identifier used as the link to routing command

objects to the correct interfaces to operate on them, no other code within the software

hierarchy needs to be modified. This yields an immediate benefit during software

validation because code that was not changed does not need to be re-verified.

Data Model

The MAT Data Model tracks all datasets, axes, and data objects created in the

dataset Execution Unit as a result of user commands during simulation. The Data Model

is constructed as a set of derived classes from a virtual base class, as shown in Figure 23

below. These classes are used throughout the DCIL, MATServ, and MATView as the

means by which MAT data objects are temporarily or persistently stored in each library

or application.

Figure 23 – UML Diagram of the MAT Data Model Classes

The virtual base class MAT_dataobj_base contains all the common information

stored for any data point created. Every derived class contains additional fields specific

to the type of data being stored. For example, the derived MAT_dataobj_delta class

contains a field that stores the value of the data point, in addition to all the fields inherited

from MAT_dataobj_base. Similarly, the MAT_dataobj_event class contains fields

needed to store events data objects, such as the event name, number of times the event

has occurred, and the simulation and timeset time since the previous event. The DCIL

 73

class MAT_dataset_track shown in Figure 21 is utilized for temporary storage of all

data objects created from the above classes.

Output Interface

The Output Interface is responsible for receiving Data Model objects and

translating them for subsequent serial communication on the various output drivers

available.

Figure 24 – UML Diagram of the DCIL Output Interface Classes

 74

As shown in the above figure, the MAT_output_base is a virtual base class that

receives data objects sent from the MAT_dataset_if Execution Unit. The data objects

are submitted to the static submit_data() method in MAT_output_base. Once received,

 75

identical copies of the objects are created, and are queued up internally in this class until

an data object count threshold is reached. The threshold is set via the flush_interval

configuration parameter in the MAT global configuration file.

The output driver classes MAT_text_output and MAT_DX_output are derived

from MAT_output_base, and act upon the data objects as they are flushed from the

queue within the base class. At construction in MAT_top, each output driver class

registers itself with MAT_output_base. In addition, MAT_output_base uses

configuration parameters obtained by the Configuration Interface to determine the

enablement status of each output driver. Later, when data objects are received and

eventually flushed by the MAT_output_base class, the group of objects are sent to each

registered and enabled driver in turn. Once all output drivers have been sent the group of

data objects, they are dequeued and deleted from the MAT_output_base class.

The MAT_text_output driver is responsible for printing the data objects to the

screen, detailing the information present for each data point. This driver is particularly

useful for DCIL debugging, as well as developer verification that data objects are created

as expected for given user command stimuli. The output of this driver is textually

identical to debug screen output that can be generated for MATServ and MATView, which

aids in ensuring that data objects are received and retransmitted without inadvertent loss

of information.

The MAT_DX_output driver is responsible for serializing and transmitting data

objects over a network channel to MATServ for online storage. When this driver receives

a group of data objects from the base class, each object is parsed to determine the object

type, and then it is sent field-by-field over the network channel. The MAT_socket helper

class is used to accomplish the network transfer via ASCII text transfer over a TCP/IP

socket. This class interfaces with an open-source TCP/IP sockets library to accomplish

 76

the network communication. The MAT_DX_output driver and MATServ observe a

meta-protocol for transmission of data objects, which includes the ability to retry

transmissions if data was not received properly by MATServ.

MATSERV

MATServ is the interface between the DCIL and MATView, providing online

storage of received data objects during simulation, and enabling MATView to retrieve

data objects at its own desired rate.

The construction of this application began with a logical partitioning of

functionality, translating into an object-oriented class organization. The functional

responsibilities of MATServ are listed in Table 19 below, alongside the abbreviated name

used thereafter to reference each functional responsibility.

Functional Responsibility Abbreviated Name

1. Provide a TCP/IP socket interface for inbound data
object transmission from the DCIL.

Inbound Interface

2. Provide a means of persistent data object storage. Data Storage
3. Provide a TCP/IP socket interface for outbound data

object transmission to MATView.
Outbound Interface

Table 19 – MATServ Functional Responsibilities

The entire class hierarchy for MATServ can be found in Figure 25 below, and will

be referenced for subsequent discussions of functionality.

Figure 25 – UML Diagram of the MATServ Classes

Inbound Interface

The Inbound Interface is responsible for handling communication as a network

server for the DCIL to receive inbound serialized data objects, and translating them into

memory-allocated data objects with the appropriate class designation. As shown in the

above figure, the class MATS_inbound_server is the interface instantiated by the

application top-level MATS_top class to handle the receipt of data objects from the

DCIL. This class instantiates MATS_inbound_server_socket as the actual TCP/IP

 77

 78

socket server, and establishes this server as a free-running thread. When the DCIL

Output Interface communicates with this Inbound Interface, data objects are streamed as

ASCII text across the network socket, and this free-running server thread captures the

text and translates it into the original data objects. The newly created data objects are

then sent to the Data Storage repository.

Data Storage

The Data Storage interface is responsible for maintaining all received data objects

from the Inbound Interface, and providing a mechanism for retrieval by the Outbound

Interface. The MATS_dataobj_storage class implements the storage, and also

maintains a list of the datasets with data objects currently in storage. This information is

eventually used by MATView to determine which datasets have data points available for

plotting.

As each data object is translated by the Inbound Interface, it is submitted to the

static instantiation of MATS_dataobj_storage via the add_dataobj() method. This is the

only method by which data objects are inserted into storage. Later when data objects are

retrieved by the Outbound Interface, the get_available_datasets() and

get_dataobj_container() methods are used to query the database and retrieve objects,

respectively.

Outbound Interface

Over the course of a simulation, data objects arrive into Data Storage and are

subsequently available for retrieval by MATView. The Outbound Interface is a network

server that handles requests from MATView, and subsequently decomposes and transmits

data objects over a TCP/IP socket. The MATS_outbound_server class instantiates

MATS_outbound_server_socket as an object in a free-running thread that continually

 79

monitors for inbound socket connections from MATView. Requests may arrive for the

availability of data objects, and this interface will respond with the current datasets that

have data objects in storage, and the corresponding number of data objects available for

each dataset. Alternately, requests may arrive from MATView to receive data objects

from a specific dataset. In this case, MATView specifically requests the dataset, and the

number of objects from the dataset. In this way, MATView can track how many objects

have been received between update requests to MATServ, and thus it can incrementally

acquire new data objects as they become available in the Data Storage.

MATVIEW

MATView is the visualization front-end application which communicates with

MATServ to obtain data objects, and produces data usable by OpenDX for subsequent

visualization and manipulation.

The MATView application has several functional responsibilities which translate

into an object-oriented implementation. These responsibilities are listed in Table 20

below, alongside the abbreviated name used thereafter to reference each functional

responsibility.

Functional Responsibility Abbreviated Name

1. Provide a TCP/IP socket interface for inbound data
object transmission from MATServ.

Inbound Interface

2. Provide a facility for translation of MAT data model
objects to the OpenDX data model.

Model Translation

Table 20 – MATView Functional Responsibilities

Inbound Interface

The Inbound Interface is responsible for receiving serialized data objects from

MATServ via a TCP/IP network connection, and translating them into memory-allocated

data objects with the appropriate class designation.

Figure 26 – UML Diagram of the MATView Inbound Interface Classes

As shown in the above figure, the MATV_data_access class is instantiated by the

top-level class for this application, MATV_top. The MATV_data_access class provides

methods by which the Model Translation interface will retrieve objects from MATServ,

and manipulate the data object cache local to the MATView application. The

MATV_socket class and its helper MATV_inbound_client_socket handle all TCP/IP

socket communication with MATServ. MAT data model objects are stored in the static

 80

MATV_dataobj_storage data management class, which is referenced by

MATV_data_access for data retrieval once the download of data objects from MATServ

has completed.

Model Translation

The Model Translation interface is responsible for translating MAT data objects

received via the Inbound Interface into the OpenDX data model. This conversion process

is necessary before the data is exported for use by the OpenDX visualization tool.

Figure 27 – UML Diagram of the MATView Model Translation Classes

As shown in the above figure, MATV_top has a reference to the same

MATV_data_access object used for MAT data object storage after retrieval from

MATServ. The implementation in MATV_top retrieves all data objects of a specified

dataset, and then uses the MATV_object_translate class to perform a translation of each

 81

 82

data object into the OpenDX data model. The OpenDX data model objects created after

translation are stored in the MATV_datamodel_storage class object. Finally, after the

MATV_top implementation retrieves all available MAT data objects for all datasets

present in MATServ, and subsequently translates them to OpenDX data objects, the

OpenDX data model is exported to a text file that can be read by the OpenDX Data

Explorer for visualization and manipulation.

OpenDX Data Model

The data model that is centric to the OpenDX libraries and Data Explorer

application is organized in a hierarchical fashion. The hierarchy is analogous to the

hierarchy of the MAT data model. The concept of a MAT dataset that contains related

data on separate axes corresponds to an OpenDX Field. Similarly, the MAT axis

corresponds to an OpenDX Array, which is a component member of a field. Thus, each

axis within a dataset corresponds to an OpenDX array within a field. In addition, the

simulation time and timeset time axes in a dataset which are maintained by the DCIL

during simulation correspond to additional and separate OpenDX arrays in the field.

OpenDX arrays are simply an ordered collections of individual datum,

comparable to a simple C-language array. MAT utilizes the arrays within a field in a

positional fashion, such that all elements in all arrays for a specific index are potentially

related. The simulation time array component of a field contains all the times during

simulation when a piece of data was captured on any axis within the dataset. For some

positions within the simulation time array, every other array within the field will have a

piece of data to correspond with that simulation time, which will be located in the same

array index as the simulation time. This scenario occurs when data was collected for

every axis in a dataset during a given simulation time. For other positions within the

simulation time array, not all arrays will contain a data value that corresponds to the

 83

simulation time. This scenario occurs when not all axes in a dataset have captured data

for a given simulation time. In this case, additional arrays in the field are used to denote

that a particular position for an array is invalid, indicating that no data exists for the

corresponding data array index position. Thus, the additional array in the same field,

called an invalids array, is associated with a data array that contains captured data values,

and indicates whether each position within the array has valid or invalid data. Typically

there is one invalids array for every data array in a field.

 84

CONCLUDING REMARKS AND FUTURE WORK

The development of this project from original concept to implementation and

subsequent documentation in this report consisted of nearly one year of work, mostly

taking place in the evenings. The original concept was defined and documented in a

specification, which was refined via many iterations of thought long before

implementation began. Rather than ascribing to the notorious "ready-fire-aim"

methodology of software development, the process of completely specifying the tool

functionality up front was employed, and undoubtedly saved many hours of rework that

would have ensued after dead-end paths were finally realized. Conducting thought-

experiments, imagining real-world usage scenarios, devising the methodology for an

object-oriented class organization, and researching existing graphical visualization tools

contributed to the refinement process, which lasted nearly four months. In retrospect,

four months of planning was not long enough, but there were bounds on the project

imposed by the desire to eventually graduate.

The remainder of the time spent on this project encompassed the software

implementation. During that time, several meetings with my advisors proved beneficial

as I provided the status of my progress, as well as received feedback that brought to light

facets of the project that I did not originally examine. Admittedly, one portion of the

project that was not completely conceived before implementation began was the

partitioning of the tool into three separate entities (DCIL, MATServ, MATView). Only

during the implementation phase and subsequent self-deliberation of how to drive the

data visualization interface did I realize that the tool needed to be partitioned into at least

two asynchronously connected pieces. In fact, I eventually determined that the tool

should be partitioned into three separate pieces, each connected via a network interface to

 85

allow for a distributed usage model. This caused a substantial progress interruption as

the network programming aspect of the tool was researched. After nearly a half-month of

research and testing, an open-source TCP/IP C++ Sockets library was selected. Though

fairly stable, several iterations of bug reporting and library fixes were required before it

could be used in my application. The saving grace was that the library developer was

more than willing to quickly address all the problems I encountered during its integration

into my application; otherwise, development progress could have grinded to a halt.

There are plans for additional upgrades and refinement of the Model Analysis

Tool after this report is published. New hardware description languages and electronic

system level languages will be investigated for MAT support. Additionally, the complete

integration of the OpenDX tool with MATView is a key upgrade slated to occur. This

will remove the need to run OpenDX Data Explorer as a separate application. Rather,

the OpenDX API will be called from within the MATView application, and all

visualization and associated manipulation will be controlled via the MATView GUI. This

will also relieve the user from the need to learn the extensible but often overwhelming

Data Explorer application interface, as MATView will hide that complexity with a

simpler GUI with preconfigured visualization options.

Additionally, I plan to explore the Java language for possible use. Several

features of MAT that required external library support are native to Java. Given the

stabilization of the language, feature set, portability, and performance improvements of

the virtual machines, Java may be a possible candidate for a language remap of a portion

or the entire tool.

Finally, I envision building a testbench environment that surrounds MAT for the

purpose of tool validation. Random tests consisting of DCIL command sequences are

generated, applied to the tool during simulation, and stored in MATServ. Subsequently

 86

the testbench will retrieve the MAT data objects from MATServ and compares them with

the anticipated results based upon the original random test case. This self-checking

environment will test the path from original data capture to MAT data model conversion

and storage in MATServ, and will enable extensive software validation for all future

revisions of the tool.

 87

BIBLIOGRAPHY

1. Jantcsh, A., and Sander, I.: ‘Models of computation and languages for embedded

system design’, Proc. IEE Comput. Digit. Tech., 2005, 152, (2), pp. 114-129

2. Hedström, Anders (2005) C++ Sockets Library [Online]. 2005. Available from

World Wide Web: http://www.alhem.net/Sockets/

3. OpenDX: The Open Source Software Project Based on IBM’s Visualization Data

Explorer (2005) [Online]. 2005. Available from World Wide Web:

http://www.opendx.org/

 88

VITA

Matt Genovese was born in Reading, Pennsylvania in May, 1974, the son of Michael and

Maria Genovese. After several moves, his family settled in Owego, New York – a small

town located along the picturesque Susquehanna river. Upon high school graduation

from Owego Free Academy in 1992, he attended the Rochester Institute of Technology

with a major in Computer Engineering. After completion of the five-year undergraduate

program, Matt received a Bachelor of Science degree in Computer Engineering in

December 1997. In January 1998 he joined Motorola in the Semiconductor Products

Sector as a Product & Test Engineer for the PowerQUICC™ line of network processors.

After spending over four years in that role, Matt joined the Motorola PowerPC™

Somerset design center to work in functional verification on PowerPC embedded

processors and systems. Matt remains employed in this role, though the Semiconductor

Products Sector was spun-off by Motorola in 2004, and is now Freescale Semiconductor.

In 2004, Matt entered Graduate School at The University of Texas at Austin to attain a

Master of Science degree in Electrical Engineering.

Matt currently lives in Austin, Texas with his wife and two children.

Permanent Address: 417 Carismatic Lane

 Austin, Texas 78748

This report was typed by the author.

	List of Tables
	List of Figures
	CHAPTER 1
	Preface
	Abstract
	Background
	Motivation

	CHAPTER 2
	Introduction
	Resources and Performance Measurement
	Resource Utilization
	Figure 1 – Example Depiction of a Resource State Measurement

	Resource Performance
	Figure 2 – Example Depiction of a Resource Span Measurement

	Global Measurements

	Model Analysis Tool Overview
	Key Features
	User Command Taxonomy
	Table 1 – User Command Taxonomy

	Visualization

	CHAPTER 3
	The Model Analysis Tool
	High-Level Architecture
	Figure 3 – Example of the Distributed MAT Architecture

	MAT Data Model
	A Notion of Time
	Figure 4 – Timeset Tracking of Regularity in the Model
	Figure 5 – Timeset Tracking of Irregularity in Model

	Data Model Organization
	Figure 6 – Depiction of a Dataset

	Data Capture Interface Library
	Timeset Creation
	Timeset Commands
	Table 2 – Timeset Commands

	Example Usage

	Dataset Creation
	Dataset Creation Command
	Table 3 – Command Syntax of mat_init_dataset()

	Example Usage

	Resource Utilization Assessment
	Resource State Measurement
	Table 4 – Command Syntax of mat_set_state()

	Example Usage

	Resource Performance Assessment
	Simple Value Measurement
	Table 5 – Command Syntax of mat_measure()
	Figure 7 – Depiction of Simple Value Measurements

	Example Usage
	Incremental Value Measurement
	Table 6 – Command Syntax of mat_measure_sum()
	Figure 8 – Depiction of Incremental Value Measurements

	Example Usage
	Tagged Delta Measurement
	Table 7 – Command Syntax of mat_measure_delta()
	Figure 9 – Depiction of Tagged Delta Measurements

	Example Usage
	Tagged Rate Measurement
	Table 8 – Command Syntax of mat_measure_rate()
	Figure 10 – Depiction of Tagged Rate Measurements

	Example Usage
	Tagged Derivative Measurement
	Table 9 – Command Syntax of mat_measure_deriv()
	Figure 11 – Depiction of Tagged Derivative Measurements

	Example Usage
	Tagged Time Measurement
	Table 10 – Command Syntax of mat_measure_time()
	Figure 12 – Depiction of Tagged Time Measurements

	Example Usage
	Resource Event Measurement
	Table 11 – Command Syntax of mat_event()
	Figure 13 – Depiction of Resource Event Measurements

	Example Usage
	Resource Span Event Measurement
	Table 12 – Span Event Commands
	Figure 14 – Depiction of Resource Span Event Measurements

	Example Usage
	Figure 15 – Example of Data Flow Between Four Functional Uni

	Global Measurement Commands
	Global State Measurement
	Table 13 – Command Syntax of mat_global_state()

	Example Usage
	Global Event Measurement
	Table 14 – Command Syntax of mat_global_event()

	Example Usage

	General MAT Commands
	Table 15 – General MAT Commands

	Tool Configuration
	Global Configuration File
	Table 16 – Example Global Configuration File

	Dataset Configuration File
	Table 17 – Example Dataset Configuration File
	Automatic State Coverage Axis Generation
	Figure 16 – Example State Axis and Auto-generated Coverage A

	MATServ Data Server
	MATView Visualization Client
	Visualization Using OpenDX Data Explorer
	Figure 17 – Example MAT Output Viewed in OpenDX Data Explore

	CHAPTER 4
	Model Analysis Tool Implementation
	Overview
	Data Capture Interface Library
	Table 18 – DCIL Functional Responsibilities
	Command Interface
	Figure 18 – UML Diagram of the DCIL Command Classes

	Configuration Interface
	Figure 19 – UML Diagram of DCIL Configuration Classes

	Command Bridge
	Figure 20 – UML Diagram of the DCIL Command Bridge Classes

	Execution Units
	Figure 21 – UML Diagram of the DCIL Dataset Execution Unit a
	Figure 22 – UML Diagram of the DCIL Timeset Execution Unit a

	Data Model
	Figure 23 – UML Diagram of the MAT Data Model Classes

	Output Interface
	Figure 24 – UML Diagram of the DCIL Output Interface Classes

	MATServ
	Table 19 – MATServ Functional Responsibilities
	Figure 25 – UML Diagram of the MATServ Classes

	Inbound Interface
	Data Storage
	Outbound Interface

	MATView
	Table 20 – MATView Functional Responsibilities
	Inbound Interface
	Figure 26 – UML Diagram of the MATView Inbound Interface Cla

	Model Translation
	Figure 27 – UML Diagram of the MATView Model Translation Cla
	OpenDX Data Model

	CONCLUDING REMARKS AND FUTURE WORK
	BIBLIOGRAPHY
	VITA

